Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 46(14): 7169-7178, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29917162

RESUMEN

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias for uracil located <10 bp from the junction, but only when the overhang had a 5' end. Biased targeting required the NTD and was not observed with the hUNG2 catalytic domain alone. Consistent with this requirement, the isolated NTD was found to bind weakly to ssDNA. These findings indicate that the NTD of hUNG2 targets the enzyme to ssDNA-dsDNA junctions using RPA-dependent and RPA-independent mechanisms. This structure-based specificity may promote efficient removal of uracils that arise from dUTP incorporation during DNA replication, or additionally, uracils that arise from DNA cytidine deamination at transcriptional R-loops during immunoglobulin class-switch recombination.


Asunto(s)
ADN de Cadena Simple/metabolismo , ADN/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Uracilo/metabolismo , Secuencia de Bases , Sitios de Unión , ADN/química , ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/genética , Nucleótidos de Desoxiuracil/metabolismo , Humanos , Modelos Genéticos , Conformación de Ácido Nucleico , Unión Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Especificidad por Sustrato , Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/genética
2.
Nucleic Acids Res ; 45(21): 12413-12424, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036472

RESUMEN

DNA 'sliding' by human repair enzymes is considered to be important for DNA damage detection. Here, we transfected uracil-containing DNA duplexes into human cells and measured the probability that nuclear human uracil DNA glycosylase (hUNG2) excised two uracil lesions spaced 10-80 bp apart in a single encounter without escaping the micro-volume containing the target sites. The two-site transfer probabilities were 100% and 54% at a 10 and 40 bp spacing, but dropped to only 10% at 80 bp. Enzyme trapping experiments suggested that site transfers over 40 bp followed a DNA 'hopping' pathway in human cells, indicating that authentic sliding does not occur even over this short distance. The transfer probabilities were much greater than observed in aqueous buffers, but similar to in vitro measurements in the presence of polymer crowding agents. The findings reveal a new role for the crowded nuclear environment in facilitating DNA damage detection.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN/metabolismo , Línea Celular , Humanos , Uracilo/metabolismo
3.
Biochemistry ; 56(14): 1974-1986, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28345889

RESUMEN

A major product of oxidative DNA damage is 8-oxoguanine. In humans, 8-oxoguanine DNA glycosylase (hOGG1) facilitates removal of these lesions, producing an abasic (AP) site in the DNA that is subsequently incised by AP-endonuclease 1 (APE1). APE1 stimulates turnover of several glycosylases by accelerating rate-limiting product release. However, there have been conflicting accounts of whether hOGG1 follows a similar mechanism. In pre-steady-state kinetic measurements, we found that addition of APE1 had no effect on the rapid burst phase of 8-oxoguanine excision by hOGG1 but accelerated steady-state turnover (kcat) by ∼10-fold. The stimulation by APE1 required divalent cations, could be detected under multiple-turnover conditions using limiting concentrations of APE1, did not require flanking DNA surrounding the hOGG1 lesion site, and occurred efficiently even when the first 49 residues of APE1's N-terminus had been deleted. Stimulation by APE1 does not involve relief from product inhibition because thymine DNA glycosylase, an enzyme that binds more tightly to AP sites than hOGG1 does, could not effectively substitute for APE1. A stimulation mechanism involving stable protein-protein interactions between free APE1 and hOGG1, or the DNA-bound forms, was excluded using protein cross-linking assays. The combined results indicate a mechanism whereby dynamic excursions of hOGG1 from the AP site allow APE1 to invade the site and rapidly incise the phosphate backbone. This mechanism, which allows APE1 to access the AP site without forming specific interactions with the glycosylase, is a simple and elegant solution to passing along unstable intermediates in base excision repair.


Asunto(s)
Adenosina Trifosfato/química , ADN Glicosilasas/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN/química , Guanina/análogos & derivados , Adenosina Trifosfato/metabolismo , Reactivos de Enlaces Cruzados/química , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Expresión Génica , Glutaral/química , Guanina/química , Guanina/metabolismo , Radioisótopos de Fósforo , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado/métodos
4.
DNA Repair (Amst) ; 86: 102764, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31855846

RESUMEN

Many human DNA repair proteins have disordered domains at their N- or C-termini with poorly defined biological functions. We recently reported that the partially structured N-terminal domain (NTD) of human uracil DNA glycosylase 2 (hUNG2), functions to enhance DNA translocation in crowded environments and also targets the enzyme to single-stranded/double-stranded DNA junctions. To understand the structural basis for these effects we now report high-resolution heteronuclear NMR studies of the isolated NTD in the presence and absence of an inert macromolecular crowding agent (PEG8K). Compared to dilute buffer, we find that crowding reduces the degrees of freedom for the structural ensemble, increases the order of a PCNA binding motif and dramatically promotes binding of the NTD for DNA through a conformational selection mechanism. These findings shed new light on the function of this disordered domain in the context of the crowded nuclear environment.


Asunto(s)
ADN Glicosilasas/química , ADN Glicosilasas/metabolismo , ADN/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Desplegamiento Proteico
5.
ACS Chem Biol ; 12(9): 2260-2263, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28787572

RESUMEN

Nuclear human uracil-DNA glycosylase (hUNG2) initiates base excision repair (BER) of genomic uracils generated through misincorporation of dUMP or through deamination of cytosines. Like many human DNA glycosylases, hUNG2 contains an unstructured N-terminal domain that encodes a nuclear localization signal, protein binding motifs, and sites for post-translational modifications. Although the N-terminal domain has minimal effects on DNA binding and uracil excision kinetics, we report that this domain enhances the ability of hUNG2 to translocate on DNA chains as compared to the catalytic domain alone. The enhancement is most pronounced when physiological ion concentrations and macromolecular crowding agents are used. These data suggest that crowded conditions in the human cell nucleus promote the interaction of the N-terminus with duplex DNA during translocation. The increased contact time with the DNA chain likely contributes to the ability of hUNG2 to locate densely spaced uracils that arise during somatic hypermutation and during fluoropyrimidine chemotherapy.


Asunto(s)
ADN Glicosilasas/metabolismo , ADN/metabolismo , Sitios de Unión , Transporte Biológico , ADN Glicosilasas/química , Humanos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA