Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 18(1): 446, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29017443

RESUMEN

BACKGROUND: Named entity recognition is critical for biomedical text mining, where it is not unusual to find entities labeled by a wide range of different terms. Nowadays, ontologies are one of the crucial enabling technologies in bioinformatics, providing resources for improved natural language processing tasks. However, biomedical ontology-based named entity recognition continues to be a major research problem. RESULTS: This paper presents an automated synonym-substitution method to enrich the Human Phenotype Ontology (HPO) with new synonyms. The approach is mainly based on both the lexical properties of the terms and the hierarchical structure of the ontology. By scanning the lexical difference between a term and its descendant terms, the method can learn new names and modifiers in order to generate synonyms for the descendant terms. By searching for the exact phrases in MEDLINE, the method can automatically rule out illogical candidate synonyms. In total, 745 new terms were identified. These terms were indirectly evaluated through the concept annotations on a gold standard corpus and also by document retrieval on a collection of abstracts on hereditary diseases. A moderate improvement in the F-measure performance on the gold standard corpus was observed. Additionally, 6% more abstracts on hereditary diseases were retrieved, and this percentage was 33% higher if only the highly informative concepts were considered. CONCLUSIONS: A synonym-substitution procedure that leverages the HPO hierarchical structure works well for a reliable and automatic extension of the terminology. The results show that the generated synonyms have a positive impact on concept recognition, mainly those synonyms corresponding to highly informative HPO terms.


Asunto(s)
Ontologías Biológicas , Minería de Datos/métodos , Semántica , Humanos , Fenotipo
2.
BMC Med Inform Decis Mak ; 17(1): 159, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29207981

RESUMEN

BACKGROUND: Electronic rating scales represent an important resource for standardized data collection. However, the ability to exploit reasoning on rating scale data is still limited. The objective of this work is to facilitate the integration of the semantics required to automatically interpret collections of standardized clinical data. We developed an electronic prototype for the Scale of the Assessment and Rating of Ataxia (SARA), broadly used in neurology. In order to address the modeling challenges of the SARA, we propose to combine the best performances from OpenEHR clinical archetypes, guidelines and ontologies. METHODS: A scaled-down version of the Human Phenotype Ontology (HPO) was built, extracting the terms that describe the SARA tests from free-text sources. This version of the HPO was then used as backbone to normalize the content of the SARA through clinical archetypes. The knowledge required to exploit reasoning on the SARA data was modeled as separate information-processing units interconnected via the defined archetypes. Each unit used the most appropriate technology to formally represent the required knowledge. RESULTS: Based on this approach, we implemented a prototype named SARA Management System, to be used for both the assessment of cerebellar syndrome and the production of a clinical synopsis. For validation purposes, we used recorded SARA data from 28 anonymous subjects affected by Spinocerebellar Ataxia Type 36 (SCA36). When comparing the performance of our prototype with that of two independent experts, weighted kappa scores ranged from 0.62 to 0.86. CONCLUSIONS: The combination of archetypes, phenotype ontologies and electronic information-processing rules can be used to automate the extraction of relevant clinical knowledge from plain scores of rating scales. Our results reveal a substantial degree of agreement between the results achieved by an ontology-aware system and the human experts.


Asunto(s)
Ataxia/diagnóstico , Registros Electrónicos de Salud , Guías como Asunto , Índice de Severidad de la Enfermedad , Terminología como Asunto , Ataxia/fisiopatología , Ontologías Biológicas , Humanos , Fenotipo
3.
Artículo en Inglés | MEDLINE | ID: mdl-24903515

RESUMEN

MOTIVATION: As the number of clinical reports in the peer-reviewed medical literature keeps growing, there is an increasing need for online search tools to find and analyze publications on patients with similar clinical characteristics. This problem is especially critical and challenging for rare diseases, where publications of large series are scarce. Through an applied example, we illustrate how to automatically identify new relevant cases and semantically annotate the relevant literature about patient case reports to capture the phenotype of a rare disease named cerebrotendinous xanthomatosis. RESULTS: Our results confirm that it is possible to automatically identify new relevant case reports with a high precision and to annotate them with a satisfactory quality (74% F-measure). Automated annotation with an emphasis to entirely describe all phenotypic abnormalities found in a disease may facilitate curation efforts by supplying phenotype retrieval and assessment of their frequency. Availability and Supplementary information: http://www.usc.es/keam/Phenotype Annotation/. Database URL: http://www.usc.es/keam/PhenotypeAnnotation/


Asunto(s)
Minería de Datos , Enfermedades Raras/patología , Semántica , Automatización , Ontologías Biológicas , Humanos , PubMed
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA