Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Exp Bot ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666596

RESUMEN

Plants rely on complex regulatory mechanisms to ensure proper growth and development. As sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. The GROWTH-REGULATING FACTORs (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, offering promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRF activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and the plant's response to a changing environment. This review focuses on the premise that unlocking their full biotechnological potential requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members and the gene networks that they regulate.

2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526654

RESUMEN

Gene expression is reconfigured rapidly during the cell cycle to execute the cellular functions specific to each phase. Studies conducted with synchronized plant cell suspension cultures have identified hundreds of genes with periodic expression patterns across the phases of the cell cycle, but these results may differ from expression occurring in the context of intact organs. Here, we describe the use of fluorescence-activated cell sorting to analyze the gene expression profile of G2/M cells in the growing root. To this end, we isolated cells expressing the early mitosis cell cycle marker CYCLINB1;1-GFP from Arabidopsis root tips. Transcriptome analysis of these cells allowed identification of hundreds of genes whose expression is reduced or enriched in G2/M cells, including many not previously reported from cell suspension cultures. From this dataset, we identified SCL28, a transcription factor belonging to the GRAS family, whose messenger RNA accumulates to the highest levels in G2/M and is regulated by MYB3R transcription factors. Functional analysis indicates that SCL28 promotes progression through G2/M and modulates the selection of cell division planes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Mitosis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Meristema/metabolismo , Mitosis/genética , Organogénesis , Factores de Transcripción/metabolismo , Transcriptoma/genética
3.
New Phytol ; 237(5): 1652-1666, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451535

RESUMEN

The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Endorreduplicación , Regulación de la Expresión Génica de las Plantas , Mitosis
4.
Plant Cell ; 30(2): 347-359, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29352064

RESUMEN

In the root meristem, the quiescent center (QC) is surrounded by stem cells, which in turn generate the different cell types of the root. QC cells rarely divide under normal conditions but can replenish damaged stem cells. In the proximal meristem, the daughters of stem cells, which are referred to as transit-amplifying cells, undergo additional rounds of cell division prior to differentiation. Here, we describe the functions of GRF-INTERACTING FACTORs (GIFs), including ANGUSTIFOLIA3 (AN3), in Arabidopsis thaliana roots. GIFs have been shown to interact with GRF transcription factors and SWI/SNF chromatin remodeling complexes. We found that combinations of GIF mutants cause the loss of QC identity. However, despite their QC impairment, GIF mutants have a significantly enlarged root meristem with additional lateral root cap layers. We show that the increased expression of PLETHORA1 (PLT1) is at least partially responsible for the large root meristems of an3 mutants. Furthermore, we found that GIFs are necessary for maintaining the precise expression patterns of key developmental regulators and that AN3 complexes bind directly to the promoter regions of PLT1 as well as SCARECROW We propose that AN3/GIFs participate in different pathways that control QC organization and the size of the meristem.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , División Celular/genética , Ensamble y Desensamble de Cromatina/genética , Homeostasis/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Plant Physiol ; 176(2): 1694-1708, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29133375

RESUMEN

The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA-like TCPs (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis (Arabidopsis thaliana) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesis-related genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10 Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Cell ; 27(12): 3354-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26645252

RESUMEN

To ensure an adequate organ mass, the daughters of stem cells progress through a transit-amplifying phase displaying rapid cell division cycles before differentiating. Here, we show that Arabidopsis thaliana microRNA miR396 regulates the transition of root stem cells into transit-amplifying cells by interacting with GROWTH-REGULATING FACTORs (GRFs). The GRFs are expressed in transit-amplifying cells but are excluded from the stem cells through inhibition by miR396. Inactivation of the GRFs increases the meristem size and induces periclinal formative divisions in transit-amplifying cells. The GRFs repress PLETHORA (PLT) genes, regulating their spatial expression gradient. Conversely, PLT activates MIR396 in the stem cells to repress the GRFs. We identified a pathway regulated by GRF transcription factors that represses stem cell-promoting genes in actively proliferating cells, which is essential for the progression of the cell cycle and the orientation of the cell division plane. If unchecked, the expression of the GRFs in the stem cell niche suppresses formative cell divisions and distorts the organization of the quiescent center. We propose that the interactions identified here between miR396 and GRF and PLT transcription factors are necessary to establish the boundary between the stem cell niche and the transit-amplifying region.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , División Celular , Meristema/citología , Meristema/genética , Meristema/crecimiento & desarrollo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Nicho de Células Madre/genética , Células Madre , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant Cell ; 25(9): 3570-83, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24076976

RESUMEN

Because of their sessile lifestyle, plants are continuously exposed to solar UV-B radiation. Inhibition of leaf growth is one of the most consistent responses of plants upon exposure to UV-B radiation. In this work, we investigated the role of Growth-Regulating Factors (GRFs) and of microRNA miR396 in UV-B-mediated inhibition of leaf growth in Arabidopsis thaliana plants. We demonstrate that miRNA396 is upregulated by UV-B radiation in proliferating tissues and that this induction is correlated with a decrease in GRF1, GRF2, and GRF3 transcripts. Induction of miR396 results in inhibition of cell proliferation, and this outcome is independent of the UV-B photoreceptor UV resistance locus 8, as well as ATM AND RAD3-related and the mitogen-activated protein kinase MPK6, but is dependent on MPK3. Transgenic plants expressing an artificial target mimic directed against miR396 (MIM396) with a decrease in the endogenous microRNA activity or plants expressing miR396-resistant copies of several GRFs are less sensitive to this inhibition. Consequently, at intensities that can induce DNA damage in Arabidopsis plants, UV-B radiation limits leaf growth by inhibiting cell division in proliferating tissues, a process mediated by miR396 and GRFs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , División Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , MicroARNs/metabolismo , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantas Modificadas Genéticamente , Rayos Ultravioleta
8.
Plant J ; 79(3): 413-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888433

RESUMEN

The growth-regulating factors (GRFs) are plant-specific transcription factors. They form complexes with GRF-interacting factors (GIFs), a small family of transcriptional co-activators. In Arabidopsis thaliana, seven out of the nine GRFs are controlled by microRNA miR396. Analysis of Arabidopsis plants carrying a GRF3 allele insensitive to miR396 revealed a strong boost in the number of cells in leaves, which was further enhanced synergistically by an additional increase of GIF1 levels. Genetic experiments revealed that GRF3 can still increase cell number in gif1 mutants, albeit to a much lesser extent. Genome-wide transcript profiling indicated that the simultaneous increase of GRF3 and GIF1 levels causes additional effects in gene expression compared to either of the transgenes alone. We observed that GIF1 interacts in vivo with GRF3, as well as with chromatin-remodeling complexes, providing a mechanistic explanation for the synergistic activities of a GRF3-GIF1 complex. Interestingly, we found that, in addition to the leaf size, the GRF system also affects the organ longevity. Genetic and molecular analysis revealed that the functions of GRFs in leaf growth and senescence can be uncoupled, demonstrating that the miR396-GRF-GIF network impinges on different stages of leaf development. Our results integrate the post-transcriptional control of the GRF transcription factors with the progression of leaf development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Hojas de la Planta/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis , Senescencia Celular/genética , Senescencia Celular/fisiología , Unión Proteica , Factores de Transcripción/genética
9.
PLoS Genet ; 8(1): e1002419, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22242012

RESUMEN

MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5' portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al Calcio/genética , MicroARNs/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Planta , MicroARNs/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica
10.
Development ; 137(1): 103-12, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20023165

RESUMEN

Cell proliferation is an important determinant of plant form, but little is known about how developmental programs control cell division. Here, we describe the role of microRNA miR396 in the coordination of cell proliferation in Arabidopsis leaves. In leaf primordia, miR396 is expressed at low levels that steadily increase during organ development. We found that miR396 antagonizes the expression pattern of its targets, the GROWTH-REGULATING FACTOR (GRF) transcription factors. miR396 accumulates preferentially in the distal part of young developing leaves, restricting the expression of GRF2 to the proximal part of the organ. This, in turn, coincides with the activity of the cell proliferation marker CYCLINB1;1. We show that miR396 attenuates cell proliferation in developing leaves, through the repression of GRF activity and a decrease in the expression of cell cycle genes. We observed that the balance between miR396 and the GRFs controls the final number of cells in leaves. Furthermore, overexpression of miR396 in a mutant lacking GRF-INTERACTING FACTOR 1 severely compromises the shoot meristem. We found that miR396 is expressed at low levels throughout the meristem, overlapping with the expression of its target, GRF2. In addition, we show that miR396 can regulate cell proliferation and the size of the meristem. Arabidopsis plants with an increased activity of the transcription factor TCP4, which reduces cell proliferation in leaves, have higher miR396 and lower GRF levels. These results implicate miR396 as a significant module in the regulation of cell proliferation in plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Hibridación in Situ , Meristema/citología , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/fisiología
11.
Sci Rep ; 13(1): 175, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604484

RESUMEN

We have previously shown that Acinetobacter baumannii as well as other relevant clinical bacterial pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, perceive and respond to light at 37 °C, the normal temperature in mammal hosts. In this work, we present evidence indicating that the two-component system BfmRS transduces a light signal in A. baumannii at this temperature, showing selective involvement of the BfmR and BfmS components depending on the specific cellular process. In fact, both BfmR and BfmS participate in modulation of motility by light, while only BfmR is involved in light regulation of desiccation tolerance in this microorganism. Neither BfmR nor BfmS contain a photoreceptor domain and then most likely, the system is sensing light indirectly. Intriguingly, this system inhibits blsA expression at 37 °C, suggesting antagonistic functioning of both signaling systems. Furthermore, we present evidence indicating that the phosphorylatable form of BfmR represses motility. Overall, we provide experimental evidence on a new biological function of this multifaceted system that broadens our understanding of A. baumannii's physiology and responses to light.


Asunto(s)
Acinetobacter baumannii , Biopelículas , Animales , Humanos , Proteínas Bacterianas/metabolismo , Acinetobacter baumannii/metabolismo , Desecación , Fototransducción , Mamíferos/metabolismo
12.
Antimicrob Agents Chemother ; 55(2): 917-20, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21098239

RESUMEN

ISAba825, an insertion sequence found inactivating Acinetobacter baumannii carO, was tagged with a kanamycin (Kn) resistance cassette. ISAba825::Kn effectively transposed in A. baumannii, showing preference for short, AT-enriched target sequences, generating 6- to 9-bp target duplications. Additionally, we detected the presence of ISAba825 upstream of a plasmid-borne bla(OXA-58) gene, generating a hybrid promoter largely enhancing its expression and leading to carbapenem resistance. Overall, a role for ISAba825 in carbapenem resistance modulation in A. baumannii is proposed.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Elementos Transponibles de ADN/genética , Regulación Bacteriana de la Expresión Génica , Resistencia betalactámica/genética , beta-Lactamasas/metabolismo , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/enzimología , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , Genoma Bacteriano , Humanos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Plásmidos/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , beta-Lactamasas/genética
13.
Methods Mol Biol ; 1863: 3-17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30324589

RESUMEN

The regulatory mechanisms involved in plant development include many signals, some of them acting as graded positional cues regulating gene expression in a concentration-dependent manner. These regulatory molecules, that can be considered similar to animal morphogens, control cell behavior in developing organs. A suitable experimental approach to study expression gradients in plants is quantitative laser scanning confocal microscopy (LSCM) using Arabidopsis thaliana root tips as a model system. In this chapter, we outline a detailed method for image acquisition using LSCM, including detailed microscope settings and image analysis using FIJI as software platform.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Confocal/métodos , Raíces de Plantas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/ultraestructura , Programas Informáticos
14.
Sci Rep ; 8(1): 13447, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194309

RESUMEN

An increase in crop yield is essential to reassure food security to meet the accelerating global demand. Several genetic modifications can increase organ size, which in turn might boost crop yield. Still, only in a few cases their performance has been evaluated under stress conditions. MicroRNA miR396 repress the expression of GROWTH-REGULATING FACTOR (GRF) genes that codes for transcription factors that promote organ growth. Here, we show that both Arabidopsis thaliana At-GRF2 and At-GRF3 genes resistant to miR396 activity (rGRF2 and rGRF3) increased organ size, but only rGRF3 can produce this effect without causing morphological defects. Furthermore, introduction of At-rGRF3 in Brassica oleracea can increase organ size, and when At-rGRF3 homologs from soybean and rice are introduced in Arabidopsis, leaf size is also increased. This suggests that regulation of GRF3 activity by miR396 is important for organ growth in a broad range of species. Plants harboring rGRF3 have larger leaves also under drought stress, a condition that stimulates miR396 accumulation. These plants also showed an increase in the resistance to virulent bacteria, suggesting that the size increment promoted by rGRF3 occurs without an obvious cost on plant defenses. Our findings indicate that rGRF3 can increase plant organ size under both normal and stress conditions and is a valuable tool for biotechnological applications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Tamaño de los Órganos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Factores de Transcripción/genética
15.
Curr Opin Plant Biol ; 34: 68-76, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27794260

RESUMEN

Plants have the ability to generate different and new organs throughout their life cycle. Organ growth is mostly determined by the combinatory effects of cell proliferation and cell expansion. Still, organ size and shape are adjusted constantly by environmental conditions and developmental timing. The plasticity of plant development is further illustrated by the diverse organ forms found in nature. MicroRNAs (miRNAs) are known to control key biological processes in plants. In this review, we will discuss recent findings showing the participation of miRNA networks in the regulation of cell proliferation and organ growth. It has become clear that miRNA networks play both integrative and specific roles in the control of organ development in Arabidopsis thaliana. Furthermore, recent work in different species demonstrated a broad role for miR396 in the control of organ size, and that specific tuning of the miR396 network can improve crop yield.


Asunto(s)
MicroARNs/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferación Celular/genética , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
16.
Plant Signal Behav ; 11(6): e1184809, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27172373

RESUMEN

The combinatory effects of cell proliferation and cell elongation determines the rate at which organs growth. In the root meristematic zone cells both divide and expand, while post-mitotic cells in the elongation zone only expands until they reach their final size. The transcription factors of the GROWTH-REGULATING FACTOR (GRF) class promote cell proliferation in various plant organs. Their expression is restricted to cells with a high proliferative capacity, yet strong downregulation of the GRF activity compromise the plant survival. Part of expression pattern of the GRFs is ensured by the post-transcriptional repression mediated by the conserved microRNA miR396. Here we show the quantitative effects in root growth caused by GRF depletion in a series of transgenic lines with different miR396 levels. We show that high miRNA levels affect cell elongation and proliferation in roots. Detailed analysis suggests that cell proliferation is restricted due to a reduction in cell cycle speed that might result from defects in the accumulation of mitotic cyclins. The results provide insights into the participation of the miRNA-GRF regulatory network in root development.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , MicroARNs/metabolismo , Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Meristema/citología , Meristema/metabolismo , MicroARNs/genética , Mitosis/genética , Plantas Modificadas Genéticamente
17.
Artículo en Inglés | MEDLINE | ID: mdl-24902833

RESUMEN

Plants produce new organs throughout their life span. Leaves first initiate as rod-like structures protruding from the shoot apical meristem, while they need to pass through different developmental stages to become the flat organ specialized in photosynthesis. Leaf morphogenesis is an active process regulated by many genes and pathways that can generate organs with a wide variety of sizes and shapes. Important differences in leaf architecture can be seen among different species, but also in single individuals. A key aspect of leaf morphogenesis is the precise control of cell proliferation. Modification or manipulation of this process may lead to leaves with different sizes and shapes, and changes in the organ margins and curvature. Many genes required for leaf development have been identified in Arabidopsis thaliana, and the mechanisms underlying leaf morphogenesis are starting to be unraveled at the molecular level.


Asunto(s)
Arabidopsis/genética , Desarrollo de la Planta , Hojas de la Planta/genética , Brotes de la Planta/genética , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/crecimiento & desarrollo
18.
Mol Plant ; 7(10): 1533-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053833

RESUMEN

Leaf development has been extensively studied on a genetic level. However, little is known about the interplay between the developmental regulators and the cell cycle machinery--a link that ultimately affects leaf form and size. miR319 is a conserved microRNA that regulates TCP transcription factors involved in multiple developmental pathways, including leaf development and senescence, organ curvature, and hormone biosynthesis and signaling. Here, we analyze the participation of TCP4 in the control of cell proliferation. A small increase in TCP4 activity has an immediate impact on leaf cell number, by significantly reducing cell proliferation. Plants with high TCP4 levels have a strong reduction in the expression of genes known to be active in G2-M phase of the cell cycle. Part of these effects is mediated by induction of miR396, which represses Growth-Regulating Factor (GRF) transcription factors. Detailed analysis revealed TCP4 to be a direct regulator of MIR396b. However, we found that TCP4 can control cell proliferation through additional pathways, and we identified a direct connection between TCP4 and ICK1/KRP1, a gene involved in the progression of the cell cycle. Our results show that TCP4 can activate different pathways that repress cell proliferation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Acetatos/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Recuento de Células , Proliferación Celular/efectos de los fármacos , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Genes Reporteros , MicroARNs/genética , Mitosis/efectos de los fármacos , Mitosis/genética , Modelos Biológicos , Datos de Secuencia Molecular , Tamaño de los Órganos/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
19.
Mech Dev ; 130(1): 2-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22889666

RESUMEN

The microRNA (miRNA) miR396 regulates GROWTH-REGULATING FACTORs (GRFs), a plant specific family of transcription factors. Overexpression of miR396 causes a decrease in the GRFs that has been shown to affect cell proliferation in the meristem and developing leaves. To bring further insights into the function of the miR396 regulatory network we performed a mutant enhancer screen of a stable Arabidopsis transgenic line expressing 35S:miR396b, which has a reduction in leaf size. From this screen we recovered several mutants enhancing this phenotype and displaying organs with lotus- or needle-like shape. Analysis of these plants revealed mutations in as2 and rdr6. While 35S:miR396b in an as2 context generated organs with lotus-like shape, the overexpression of the miRNA in an rdr6 mutant background caused more important developmental defects, including pin-like organs and lobed leaves. Combination of miR396 overexpressors, and rdr6 and as2 mutants show additional organ defects, suggesting that the three pathways act in concert. Genetic interactions during leaf development were observed in a similar way between miR396 overexpression and mutants in RDR6, SGS3 or AGO7, which are known to participate in trans-acting siRNA (ta-siRNA) biogenesis. Furthermore, we found that miR396 can cause lotus- and pin-like organs per se, once a certain expression threshold is overcome. In good agreement, mutants accumulating high levels of TCP4, which induces miR396, interacted with the AS1/AS2 pathway to generate lotus-like organs. The results indicate that the miR396 regulatory network and the ta-siRNA biogenesis pathway synergistically interact during leaf development and morphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Hojas de la Planta , ARN Polimerasa Dependiente del ARN , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Morfogénesis , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Factores de Transcripción/metabolismo
20.
Plant Physiol ; 143(2): 639-49, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17189326

RESUMEN

Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 micromol quanta m(-2) s(-1) displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.


Asunto(s)
Cloroplastos/enzimología , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Estrés Oxidativo , Fotosíntesis/fisiología , Dióxido de Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Luz , Paraquat/farmacología , Pisum sativum/genética , Pisum sativum/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA