Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Amino Acids ; 54(4): 591-600, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34181092

RESUMEN

Cardiovascular disease is the major cause of death worldwide. Extensive cardiovascular biomarkers are available using blood tests but very few, if any, investigations have described non-invasive tests for cardiovascular biomarkers based on readily available hair samples. Here we show, first, that human hair proteins are post-translationally modified by arginine methylation (ArgMe). Using western blot, proteomic data mining and mass spectrometry, we identify several ArgMe events in hair proteins and we show that keratin-83 is extensively modified by ArgMe in the human hair. Second, using a preliminary cohort (n = 18) of heterogenous healthy donors, we show that the levels of protein ArgMe in hair correlate with serum concentrations of a well-established cardiovascular biomarker, asymmetric dimethylarginine (ADMA). Compared to blood collection, hair sampling is cheaper, simpler, requires minimal training and carries less health and safety and ethical risks. For these reasons, developing the potential of hair protein ArgMe as clinically useful cardiovascular biomarkers through further research could be useful in future prevention and diagnosis of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Cabello , Arginina/metabolismo , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/metabolismo , Cabello/química , Humanos , Metilación , Proteómica
2.
J Therm Biol ; 102: 103114, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34863478

RESUMEN

Aquatic organisms must cope with both rising and rapidly changing temperatures. These thermal changes can affect numerous traits, from molecular to ecological scales. Biotic stressors are already known to induce the release of chemical cues which trigger behavioural responses in other individuals. In this study, we infer whether fluctuating temperature, as an abiotic stressor, may similarly induce stress-like responses in individuals not directly exposed to the stressor. To test this hypothesis, zebrafish (Danio rerio) embryos were exposed for 24 h to fluctuating thermal stress, to medium in which another embryo was thermally stressed before ("stress medium"), and to a combination of these. Growth, behaviour, expression of molecular markers, and of whole-embryo cortisol were used to characterise the thermal stress response and its propagation between embryos. Both fluctuating high temperature and stress medium significantly accelerated development, by shifting stressed embryos from segmentation to pharyngula stages, and altered embryonic activity. Importantly, we found that the expression of sulfide:quinone oxidoreductase (SQOR), the antioxidant gene SOD1, and of interleukin-1ß (IL-1ß) were significantly altered by stress medium. This study illustrates the existence of positive thermal stress feedback loops in zebrafish embryos where heat stress can induce stress-like responses in conspecifics, but which might operate via different molecular pathways. If similar effects also occur under less severe heat stress regimes, this mechanism may be relevant in natural settings as well.


Asunto(s)
Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Respuesta al Choque Térmico , Animales , Desarrollo Embrionario , Fenotipo , Pez Cebra
3.
J Fish Biol ; 97(1): 51-63, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32166744

RESUMEN

Three-spined sticklebacks (Gasterosteus aculeatus L.) living at the southern limit of the species distribution range could possess specific morphological and physiological traits that enable these fish to live at the threshold of their physiological capacities. Morphological analysis was carried out on samples of sticklebacks living in different saline habitats of the Camargue area (Rhone delta, northern Mediterranean coast) obtained from 1993 to 2017. Salinity acclimation capacities were also investigated using individuals from freshwater-low salinity drainage canals and from mesohaline-euryhaline lagoons. Fish were maintained in laboratory conditions at salinity values close to those of their respective habitats: low salinity (LS, 5‰) or seawater (SW, 30‰). Fish obtained from a mesohaline brackish water lagoon (BW, 15‰) were acclimated to SW or LS. Oxygen consumption rates and branchial Na+ /K+ -ATPase (NKA) activity (indicator of fish osmoregulatory capacity) were measured in these LS or SW control fish and in individuals subjected to abrupt SW or LS transfers. At all the studied locations, only the low-plated "leiurus" morphotype showed no spatial or temporal variations in their body morphology. Gill rakers were only longer and denser in fish sampled from the LS-freshwater (FW) drainage canals. All fish presented similar physiological capacities. Oxygen consumption rates were not influenced by salinity challenge except in SW fish transferred to LS immediately and 1 h after transfer. However, and as expected, gill NKA activity was salinity dependent. Sticklebacks of the Camargue area sampled from habitats with contrasted saline conditions are homogenously euryhaline, have low oxygen consumption rates and do not appear to experience significantly greater metabolic costs when challenged with salinity. However, an observed difference in gill raker length and density is most probably related to the nutritional condition of their habitat, indicating that individuals can rapidly acclimatize to different diets.


Asunto(s)
Distribución Animal , Smegmamorpha/anatomía & histología , Smegmamorpha/fisiología , Humedales , Animales , Francia , Región Mediterránea , Ríos
4.
Environ Pollut ; 362: 124952, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277126

RESUMEN

This study investigates the effects of environmentally-relevant concentrations of fluoxetine (FLX, commercial name: Prozac) on wound healing. Pollution of water systems with pharmaceutical and personal care products, including antidepressants such as FLX and other selective serotonin reuptake inhibitors, is a growing environmental concern. Environmentally-relevant FLX concentrations are known to impact physiological functions and behaviour of aquatic animals, however, the effects of exposure on humans are currently unknown. Using a combination of human skin biopsies and a human keratinocyte cell line, we show that exposure to environmental FLX promotes wound closure. We show dose-dependent increases in wound closure with FLX concentrations from 125 ng/l. Using several -omics and pharmaceutical approaches, we demonstrate that the mechanisms underlying enhanced wound closure are increased cell proliferation and serotonin signalling. Transcriptomic analysis revealed 350 differentially expressed genes after exposure. Downregulated genes were enriched in pathways related to mitochondrial function and metabolism, while upregulated genes were associated with cell proliferation and tissue morphogenesis. Kinase profiling showed altered phosphorylation of kinases linked to the MAPK pathway. Consistent with this, phosphoproteomic analyses identified 235 differentially phosphorylated proteins after exposure, with enriched GO terms related to cell cycle, division, and protein biosynthesis. Treatment of skin biopsies and keratinocytes with ketanserin, a serotonin receptor antagonist, reversed the increase in wound closure observed upon exposure. These findings collectively show that exposure to environmental FLX promotes wound healing through modulating serotonin signalling, gene expression and protein phosphorylation, leading to enhanced cell proliferation. Our results justify a transition from the study of behavioural effects of environmental FLX in aquatic animals to the investigation of effects of exposure on wound healing in aquatic and terrestrial animals, including direct impacts on human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA