Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628732

RESUMEN

Squalene is the major unsaponifiable component of virgin olive oil, the fat source of the Mediterranean diet. To evaluate its effect on the hepatic transcriptome, RNA sequencing was carried out in two groups of male Large White x Landrace pigs developing nonalcoholic steatohepatitis by feeding them a high fat/cholesterol/fructose and methionine and choline-deficient steatotic diet or the same diet with 0.5% squalene. Hepatic lipids, squalene content, steatosis, activity (ballooning + inflammation), and SAF (steatosis + activity + fibrosis) scores were analyzed. Pigs receiving the latter diet showed hepatic squalene accumulation and twelve significantly differentially expressed hepatic genes (log2 fold change < 1.5 or <1.5) correlating in a gene network. These pigs also had lower hepatic triglycerides and lipid droplet areas and higher cellular ballooning. Glutamyl aminopeptidase (ENPEP) was correlated with triglyceride content, while alpha-fetoprotein (AFP), neutralized E3 ubiquitin protein ligase 3 (NEURL3), 2'-5'-oligoadenylate synthase-like protein (OASL), and protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B) were correlated with activity reflecting inflammation and ballooning, and NEURL3 with the SAF score. AFP, ENPEP, and PPP1R1B exhibited a remarkably strong discriminant power compared to those pathological parameters in both experimental groups. Moreover, the expression of PPP1R1B, TMEM45B, AFP, and ENPEP followed the same pattern in vitro using human hepatoma (HEPG2) and mouse liver 12 (AML12) cell lines incubated with squalene, indicating a direct effect of squalene on these expressions. These findings suggest that squalene accumulated in the liver is able to modulate gene expression changes that may influence the progression of non-alcoholic steatohepatitis.


Asunto(s)
Dieta Mediterránea , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Masculino , Porcinos , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Escualeno/farmacología , alfa-Fetoproteínas
2.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35456988

RESUMEN

Squalene is a natural bioactive triterpene and an important intermediate in the biosynthesis of sterols. To assess the effect of this compound on the hepatic transcriptome, RNA-sequencing was carried out in two groups of male New Zealand rabbits fed either a diet enriched with 1% sunflower oil or the same diet with 0.5% squalene for 4 weeks. Hepatic lipids, lipid droplet area, squalene, and sterols were also monitored. The Squalene administration downregulated 9 transcripts and upregulated 13 transcripts. The gene ontology of transcripts fitted into the following main categories: transporter of proteins and sterols, lipid metabolism, lipogenesis, anti-inflammatory and anti-cancer properties. When the results were confirmed by RT-qPCR, rabbits receiving squalene displayed significant hepatic expression changes of LOC100344884 (PNPLA3), GCK, TFCP2L1, ASCL1, ACSS2, OST4, FAM91A1, MYH6, LRRC39, LOC108176846, GLT1D1 and TREH. A squalene-enriched diet increased hepatic levels of squalene, lanosterol, dihydrolanosterol, lathosterol, zymostenol and desmosterol. Strong correlations were found among specific sterols and some squalene-changed transcripts. Incubation of the murine AML12 hepatic cell line in the presence of lanosterol, dihydrolanosterol, zymostenol and desmosterol reproduced the observed changes in the expressions of Acss2, Fam91a1 and Pnpla3. In conclusion, these findings indicate that the squalene and post-squalene metabolites play important roles in hepatic transcriptional changes required to protect the liver against malfunction.


Asunto(s)
Lanosterol , Escualeno , Aciltransferasas , Animales , Desmosterol/metabolismo , Desmosterol/farmacología , Lanosterol/farmacología , Hígado/metabolismo , Masculino , Ratones , Fosfolipasas A2 Calcio-Independiente/metabolismo , Conejos , Escualeno/farmacología , Esteroles/metabolismo , Transcriptoma
3.
Int J Mol Sci ; 18(6)2017 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-28587101

RESUMEN

Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view.


Asunto(s)
Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química , Rosa/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Humanos , Medicina Tradicional/métodos , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos , Extractos Vegetales/química , Solubilidad
4.
Int J Mol Sci ; 18(1)2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28106826

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer-related death. Most cases of CRC are detected in Western countries, with its incidence increasing year by year. The probability of suffering from colorectal cancer is about 4%-5% and the risk for developing CRC is associated with personal features or habits such as age, chronic disease history and lifestyle. In this context, the gut microbiota has a relevant role, and dysbiosis situations can induce colonic carcinogenesis through a chronic inflammation mechanism. Some of the bacteria responsible for this multiphase process include Fusobacterium spp, Bacteroides fragilis and enteropathogenic Escherichia coli. CRC is caused by mutations that target oncogenes, tumour suppressor genes and genes related to DNA repair mechanisms. Depending on the origin of the mutation, colorectal carcinomas can be classified as sporadic (70%); inherited (5%) and familial (25%). The pathogenic mechanisms leading to this situation can be included in three types, namely chromosomal instability (CIN), microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Within these types of CRC, common mutations, chromosomal changes and translocations have been reported to affect important pathways (WNT, MAPK/PI3K, TGF-ß, TP53), and mutations; in particular, genes such as c-MYC, KRAS, BRAF, PIK3CA, PTEN, SMAD2 and SMAD4 can be used as predictive markers for patient outcome. In addition to gene mutations, alterations in ncRNAs, such as lncRNA or miRNA, can also contribute to different steps of the carcinogenesis process and have a predictive value when used as biomarkers. In consequence, different panels of genes and mRNA are being developed to improve prognosis and treatment selection. The choice of first-line treatment in CRC follows a multimodal approach based on tumour-related characteristics and usually comprises surgical resection followed by chemotherapy combined with monoclonal antibodies or proteins against vascular endothelial growth factor (VEGF) and epidermal growth receptor (EGFR). Besides traditional chemotherapy, alternative therapies (such as agarose tumour macrobeads, anti-inflammatory drugs, probiotics, and gold-based drugs) are currently being studied to increase treatment effectiveness and reduce side effects.


Asunto(s)
Neoplasias Colorrectales/patología , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Estadificación de Neoplasias , Factores de Riesgo , Transducción de Señal
5.
Biomedicines ; 12(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39200227

RESUMEN

This study investigates the activity of novel gold(I) and copper(I)/zinc(II) heteronuclear complexes against colon cancer. The synthesised heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes were characterised and evaluated for their anticancer activity using human colon cancer cell lines (Caco-2). The complexes exhibited potent cytotoxicity, with IC50 values in the low micromolar range, and effectively induced apoptosis in cancer cells. In the case of complex [Cu{Au(Spy)(PTA)}2]PF6 (2), its cytotoxicity is ×10 higher than its mononuclear precursor, while showing low cytotoxicity towards differentiated healthy cells. Mechanistic studies revealed that complex 2 inhibits the activity of thioredoxin reductase, a key enzyme involved in redox regulation, leading to an increase in reactive oxygen species (ROS) levels and oxidative stress, in addition to an alteration in DNA's tertiary structure. Furthermore, the complexes demonstrated a strong binding affinity to bovine serum albumin (BSA), suggesting the potential for effective drug delivery and bioavailability. Collectively, these findings highlight the potential of the investigated heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes as promising anticancer agents, particularly against colon cancer, through their ability to disrupt redox homeostasis and induce oxidative stress-mediated cell death.

6.
Antioxidants (Basel) ; 13(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38397790

RESUMEN

The increasing world population means an increased demand for sustainable processes and products related to foods, particularly those with added health benefits. Plants can be an alternative source of nutritional and biofunctional ingredients. Cytisus plants are an underexploited bioresource, currently prevalent in the Mediterranean Basin and western Asia. This manuscript addresses the processing potential of Cytisus plants for the development of added-value products, including food formulations, food packaging, cosmetics, and therapeutic applications. Most research has reported that Cytisus spp. are a promising source of inexpensive bioactive polyphenol compounds. Cytisus flowers should be considered and exploited as raw materials for the development of new food ingredients (antioxidants, preservatives, additives, etc.), nutraceuticals, or even direct therapeutic agents (anticancer, antibacterial, etc.). In order to evaluate the socioeconomic effect of these underutilized plants, more research is needed to assess their valorization for therapeutic and dietary possibilities, as well as the economic impact.

7.
Antioxidants (Basel) ; 13(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39199154

RESUMEN

Boletus edulis (BE) is a mushroom well known for its taste, nutritional value, and medicinal properties. The objective of this work was to study the biological effects of BE extracts on human colon carcinoma cells (Caco-2), evaluating parameters related to oxidative stress and inflammation. In this study, a hydroethanolic extract of BE was obtained by ohmic heating green technology. The obtained BE extracts are mainly composed of sugars (mainly trehalose), phenolic compounds (taxifolin, rutin, and ellagic acid), and minerals (K, P, Mg, Na, Ca, Zn, Se, etc.). The results showed that BE extracts were able to reduce cancer cell proliferation by the induction of cell cycle arrest at the G0/G1 stage, as well as cell death by autophagy and apoptosis, the alteration of mitochondrial membrane potential, and caspase-3 activation. The extracts modified the redox balance of the cell by increasing the ROS levels associated with a decrease in the thioredoxin reductase activity. Similarly, BE extracts attenuated Caco-2 inflammation by reducing both iNOS and COX-2 mRNA expression and COX-2 protein expression. In addition, BE extracts protected the intestine from the oxidative stress induced by H2O2. Therefore, this study provides information on the potential use of BE bioactive compounds as anticancer therapeutic agents and as functional ingredients to prevent oxidative stress in the intestinal barrier.

8.
J Physiol Biochem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787512

RESUMEN

Olive oil is the main source of lipid energy in the Mediterranean diet and there is strong evidence of its health benefits. The effect of extra virgin olive oil (EVOO) in the form of a preparation of spreadable virgin olive oil (S-VO) on the progression of atheroma plaques was investigated in Apoe-deficient mice, a model of accelerated atherosclerosis. METHODS: Two isocaloric Western purified diets containing 20% fat, either as S-VO or as dairy butter, were used to feed 28 males and 16 females of two-month-old Apoe-deficient mice for 12 weeks. S-VO was prepared by blending more than 75% virgin olive oil with other vegetal natural fat to obtain a solid fat. Plasma total cholesterol, triglycerides and HDL cholesterol were measured. Hepatic lipid droplets were analyzed. Areas of atherosclerotic aortic lesions were quantified in cross-sectional images of the proximal aorta and en face analysis of the whole aorta. RESULTS: Total plasma cholesterol was increased in mice on the butter-supplemented diet in both female and male mice compared to S-VO, and the ratio of TC/HDL-cholesterol was significantly lower in S-VO than in the butter diet, although only in males, and no differences in plasma triglycerides were observed. No significant differences in hepatic lipid droplets were observed between diets in either sex. Aortic lesion areas were significantly higher in mice consuming the butter versus the S-VO diet in both sexes. CONCLUSION: Extra virgin olive oil prepared in spreadable form maintained the delay in atheroma plaque progression compared to butter.

9.
Biomedicines ; 10(6)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740458

RESUMEN

Two new families of dithiocarbamate gold(I) complexes derived from benzenesulfonamide with phosphine or carbene as ancillary ligands have been synthesized and characterized. In the screening of their in vitro activity on human colon carcinoma cells (Caco-2), we found that the more lipophilic complexes-those with the phosphine PPh3-exhibited the highest anticancer activity whilst also displaying significant cancer cell selectivity. [Au(S2CNHSO2C6H5)(PPh3)] (1) and [Au(S2CNHSO2-p-Me-C6H4)(IMePropargyl)] (8) produce cell death, probably by intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation, causing cell cycle arrest in the G1 phase with p53 activation. Besides this, both complexes might act as multi-target anticancer drugs, as they inhibit the activity of the enzymes thioredoxin reductase (TrxR) and carbonic anhydrase (CA IX) with the alteration of the redox balance, and show a pro-oxidant effect.

10.
Antioxidants (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36552589

RESUMEN

Osteoarthritis is a prevalent degenerative condition that is closely related to the destruction and inflammation of cartilage. The high prevalence of this pathology exhorts researchers to search for novel therapeutic approaches. Vegetable-fruit wastes have emerged as a promising origin of anti-inflammatory and antioxidant compounds that, in some cases, may also exert chondroprotective effects. This study aims to decipher the potential of onion waste products in the inhibition of molecular events involved in osteoarthritis. Onion extracts showed a high content of phenolic compounds and antioxidant properties. Cytocompatibility was demonstrated in the chondrogenic cell line ATDC-5, exerting viability percentages higher than 90% and a slight increase in the S phase cycle cell. The induction of inflammation mediated by the lipopolysaccharide and onion extracts' treatment substantially inhibited molecular markers related to inflammation and cartilage degradation, highlighting the promising application of onion extracts in biomedical approaches. The in silico analyses suggested that the results could be attributed to protocatechuic, ellagic, and vanillic acids' greater cell membrane permeability. Our work provides distinctive information about the possible application of waste onion extracts as functional components with anti-inflammatory and chondroprotective characteristics in osteoarthritis.

11.
Pharmaceutics ; 14(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36297498

RESUMEN

In this paper we describe the synthesis of new N-heterocyclic carbene (NHC) gold(I) derivatives with flavone-derived ligands with a propargyl ether group. The compounds were screened for their antimicrobial and anticancer activities, showing greater activity against bacteria than against colon cancer cells (Caco-2). Complexes [Au(L2b)(IMe)] (1b) and [Au(L2b)(IPr)] (2b) were found to be active against both Gram-positive and Gram-negative strains. The mechanism of action of 1b was evaluated by measurement of thioredoxin reductase (TrxR) and dihydrofolate reductase (DHFR) activity, besides scanning electron microscopy (SEM). Inhibition of the enzyme thioredoxin reductase is not observed in either Escherichia Coli or Caco-2 cells; however, DHFR activity is compromised after incubation of E. coli cells with complex 1b. Moreover, loss of structural integrity and change in bacterial shape is observed in the images obtained from scanning electron microscopy (SEM) after treatment E. coli cells with complex 1b.

12.
Antioxidants (Basel) ; 11(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35624692

RESUMEN

Olive pomace (OP) is the main residue that results from olive oil production. OP is rich in bioactive compounds, including polyphenols, so its use in the treatments of diseases related to oxidative stress, such as cancer, could be considered. The present work aimed to study the biological properties of different OP extracts, obtained by ohmic heating-assisted extraction and conventional heating, using water and 50% ethanol, in the treatment and prevention of colorectal cancer through Caco-2 cell models. Additionally, an in-silico analysis was performed to identify the phenolic intestinal absorption and Caco-2 permeability. The extracts were chemically characterized, and it was found that the Ohmic-hydroethanolic (OH-EtOH) extract had the highest antiproliferative effect, probably due to its higher content of phenolic compounds. The OH-EtOH induced potential modifications in the mitochondrial membrane and led to apoptosis by cell cycle arrest in the G1/S phases with activation of p53 and caspase 3 proteins. In addition, this extract protected the intestine against oxidative stress (ROS) caused by H2O2. Therefore, the bioactive compounds present in OP and recovered by applying a green technology such as ohmic-heating, show promising potential to be used in food, nutraceutical, and biomedical applications, reducing this waste and facilitating the circular economy.

13.
Antioxidants (Basel) ; 11(4)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35453418

RESUMEN

In this study, the total phenolic content, the antioxidant and antiproliferative activities of onion waste extracts were characterized. Some phenolic compounds present in the extracts were also identified and quantified by HPLC-DAD. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The onion extract possessed a high amount of phenolic compounds (177 ± 9 mg/g extract) and had an effective antioxidant capacity measured by ABTS, FRAP and DPPH assays. Regarding the antiproliferative activity, the onion extracts produced cell cycle arrest in the S phase with p53 activation, intrinsic apoptosis (mitochondrial membrane potential modification) and caspase 3 activation. Likewise, onion waste increased intracellular ROS with possible NF-kB activation causing a proteasome down regulation. In addition, the extracts protected the intestine against oxidative stress induced by H2O2. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to protocatechuic acid. Therefore, this study provides new insights regarding the potential use of these types of extract as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress, such as cancer. In addition, its valorization would contribute to the circular economy.

14.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200199

RESUMEN

Since the ancient times, a great variety of plants have been used for therapeutic purposes [...].

15.
Biomolecules ; 11(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34356601

RESUMEN

In this study, the total phenolic compounds content and profile, the nutritional value, the antioxidant and antiproliferative activities of avocado peel, seed coat, and seed extracts were characterized. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The avocado peel extract possessed the highest content of phenolic compounds (309.95 ± 25.33 mMol GA/100 g of extract) and the lowest effective concentration (EC50) against DPPH and ABTS radicals (72.64 ± 10.70 and 181.68 ± 18.47, respectively). On the other hand, the peel and seed coat extracts had the lowest energy densities (226.06 ± 0.06 kcal/100 g and 219.62 ± 0.49 kcal/100 g, respectively). Regarding the antiproliferative activity, the avocado peel extract (180 ± 40 µg/mL) showed the lowest inhibitory concentration (IC50), followed by the seed (200 ± 21 µg/mL) and seed coat (340 ± 32 µg/mL) extracts. The IC50 of the extracts induced apoptosis in Caco-2 cells at the early and late stages. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to hydroxysalidroside, salidroside, sakuranetin, and luteolin. Therefore, this study provides new insights regarding the potential use of these extracts as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress such as cancer.


Asunto(s)
Antioxidantes , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Frutas/química , Alimentos Funcionales , Persea/química , Extractos Vegetales , Antioxidantes/química , Antioxidantes/farmacología , Células CACO-2 , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología
16.
Biomedicines ; 9(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34944664

RESUMEN

Overheating can affect solubility or lipophilicity, among other properties, of some anticancer drugs. These temperature-dependent changes can improve efficiency and selectivity of the drugs, since they may affect their bioavailability, diffusion through cell membrane or activity. One recent approach to create thermosensitive molecules is the incorporation of fluorine atoms in the chemical structure, since fluor can tune some chemical properties such as binding affinity. Herein we report the anticancer effect of gold derivatives with phosphanes derived from 1,3,5-triaza-7-phosphaadamantane (PTA) with long hydrocarbon chains and the homologous fluorinated chains. Besides, we analysed the influence of temperature in the cytotoxic effect. The studied gold(I) complexes with phosphanes derived from PTA showed antiproliferative effect on human colon carcinoma cells (Caco-2/TC7 cell line), probably by inhibiting cellular TrxR causing a dysfunction in the intracellular redox state. In addition, the cell cycle was altered by the activation of p53, and the complexes produce apoptosis through mitochondrial depolarization and the consequent activation of caspase-3. Furthermore, the results suggest that this cytotoxic effect is enhanced by hyperthermia and the presence of polyfluorinated chains.

17.
Antioxidants (Basel) ; 10(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562442

RESUMEN

The application of plant extracts for therapeutic purposes has been used in traditional medicine because plants contain bioactive compounds with beneficial properties for health. Currently, the use of these compounds that are rich in polyphenols for the treatment and prevention of diseases such as cancer, diabetes, and cardiovascular diseases, many of them related to oxidative stress, is gaining certain relevance. Polyphenols have been shown to have antimutagenic, antioxidant, and anti-inflammatory properties. Therefore, the objective of the present work was to study the potential effect of grape stem extracts (GSE), rich in phenolic compounds, in the treatment of cancer, as well as their role in the prevention of this disease associated with its antioxidant power. For that purpose, three cancer lines (Caco-2, MCF-7, and MDA-MB-231) were used, and the results showed that grape stem extracts were capable of showing an antiproliferative effect in these cells through apoptosis cell death associated with a modification of the mitochondrial potential and reactive oxygen species (ROS) levels. Additionally, grape stem extracts showed an antioxidant effect on differentiated intestinal cells that could protect the intestine from diseases related to oxidative stress. Therefore, grape extracts contain bioactive principles with important biological properties and could be used as bio-functional food ingredients to prevent diseases or even to improve certain aspects of human health.

18.
Food Funct ; 12(17): 8141-8153, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34291245

RESUMEN

To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, dihydrolanosterol, lathosterol, cholestanol, zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.


Asunto(s)
Colesterol/metabolismo , Hipercolesterolemia/dietoterapia , Lipoproteínas/sangre , Hígado/metabolismo , Escualeno/metabolismo , Animales , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Colesterol/sangre , HDL-Colesterol/sangre , Humanos , Hipercolesterolemia/sangre , Masculino , Conejos , Triglicéridos/sangre
19.
Food Funct ; 11(4): 2805-2825, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32134090

RESUMEN

In recent times, a great number of plants have been studied in order to identify new components with nutraceutical properties, among which are polyphenols. Dietary polyphenols represent a large group of bioactive molecules widely found in the food of plant origin and they have been found able to prevent the onset and progression of degenerative diseases, and to reduce and control their symptoms. These health protective effects have been mainly related to their antioxidant and anti-inflammatory properties. However, it must be considered that the application of isolated polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and relative bioavailability. The present review highlights the potential effect of dietary intervention with polyphenol-rich food and plant extracts in patients with cancer, diabetes and neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the possible molecular mechanisms of action suggested in numerous studies with animal models.


Asunto(s)
Dieta , Suplementos Dietéticos , Estrés Oxidativo/efectos de los fármacos , Polifenoles/administración & dosificación , Animales , Modelos Animales de Enfermedad , Alimentos Funcionales , Humanos , Fitoterapia , Polifenoles/farmacología
20.
Nanomaterials (Basel) ; 10(8)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824730

RESUMEN

Carbon nanomaterials have attracted increasing attention in biomedicine recently to be used as drug nanocarriers suitable for medical treatments, due to their large surface area, high cellular internalization and preferential tumor accumulation, that enable these nanomaterials to transport chemotherapeutic agents preferentially to tumor sites, thereby reducing drug toxic side effects. However, there are widespread concerns on the inherent cytotoxicity of carbon nanomaterials, which remains controversial to this day, with studies demonstrating conflicting results. We investigated here in vitro toxicity of various carbon nanomaterials in human epithelial colorectal adenocarcinoma (Caco-2) cells and human breast adenocarcinoma (MCF-7) cells. Carbon nanohorns (CNH), carbon nanotubes (CNT), carbon nanoplatelets (CNP), graphene oxide (GO), reduced graphene oxide (GO) and nanodiamonds (ND) were systematically compared, using Pluronic F-127 dispersant. Cell viability after carbon nanomaterial treatment followed the order CNP < CNH < RGO < CNT < GO < ND, being the effect more pronounced on the more rapidly dividing Caco-2 cells. CNP produced remarkably high reactive oxygen species (ROS) levels. Furthermore, the potential of these materials as nanocarriers in the field of drug delivery of doxorubicin and camptothecin anticancer drugs was also compared. In all cases the carbon nanomaterial/drug complexes resulted in improved anticancer activity compared to that of the free drug, being the efficiency largely dependent of the carbon nanomaterial hydrophobicity and surface chemistry. These fundamental studies are of paramount importance as screening and risk-to-benefit assessment towards the development of smart carbon nanomaterial-based nanocarriers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA