Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 23(12)2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30467300

RESUMEN

Ex vivo lung perfusion (EVLP) is an emerging procedure that allows organ preservation, assessment and reconditioning, increasing the number of marginal donor lungs for transplantation. However, physiological and airflow measurements are unable to unveil the molecular mechanisms responsible of EVLP beneficial effects on lung graft and monitor the proper course of the treatment. Thus, it is urgent to find specific biomarkers that possess these requirements but also accurate and reliable techniques that identify them. The purpose of this study is to give an overview on the potentiality of shotgun proteomic platforms in characterizing the status and the evolution of metabolic pathways during EVLP in order to find new potential EVLP-related biomarkers. A nanoLC-MS/MS system was applied to the proteome analysis of lung tissues from an optimized rat model in three experimental groups: native, pre- and post-EVLP. Technical and biological repeatability were evaluated and, together with clustering analysis, underlined the good quality of data produced. In-house software and bioinformatics tools allowed the label-free extraction of differentially expressed proteins among the three examined conditions and the network visualization of the pathways mainly involved. These promising findings encourage further proteomic investigations of the molecular mechanisms behind EVLP procedure.


Asunto(s)
Biomarcadores/metabolismo , Pulmón/metabolismo , Redes y Vías Metabólicas , Proteómica/métodos , Animales , Cromatografía Liquida , Modelos Animales , Nanotecnología , Preservación de Órganos , Perfusión , Mapas de Interacción de Proteínas , Ratas , Espectrometría de Masas en Tándem
2.
Int J Nanomedicine ; 16: 1943-1960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33727808

RESUMEN

INTRODUCTION: The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) is usually associated with aggressive and infiltrating breast cancer (BC) phenotype, and metastases. Functionalized silica-based nanocarriers (SiNPs) can be labeled for in vivo imaging applications and loaded with chemotherapy drugs, making possible the simultaneous noninvasive diagnosis and treatment (theranostic) for HER2-positive BC. METHODS: Firstly, FITC-filled SiNPs, were engineered with two different amounts of Hc-TZ (trastuzumab half-chain) per single nanoparticle (1:2 and 1:8, SiNPs to Hc-TZ ratio), which was 99mTc-radiolabeled at histidine residues for ex vivo and in vivo biodistribution evaluations. Secondly, nanoparticles were loaded with DOX and their in vitro and ex vivo/in vivo delivery was assessed, in comparison with liposomal Doxorubicin (Caelyx). Finally, the treatment efficacy of DOX-SiNPs-TZ (1:8 Hc-TZ) was evaluated in vivo by PET and supported by MS-based proteomics profiling of tumors. RESULTS: SiNPs-TZ (1:8 Hc-TZ) tumor uptake was significantly greater than that of SiNPs-TZ (1:2 Hc-TZ) at 6 hours post-injection (p.i.) in ex vivo biodistribution experiment. At 24 h p.i., radioactivity values remained steady. Fluorescence microscopy, confirmed the presence of radiolabeled SiNPs-TZ (1:8 Hc-TZ) within tumor even at later times. SiNPs-TZ (1:8 Hc-TZ) nanoparticles loaded with Doxorubicin (DOX-SiNPs-TZ) showed a similar DOX delivery capability than Caelyx (at 6 h p.i.), in in vitro and ex vivo assays. Nevertheless, at the end of treatment, tumor volume was significantly reduced by DOX-SiNPs-TZ (1:8 Hc-TZ), compared to Caelyx and DOX-SiNPs treatment. Proteomics study identified 88 high stringent differentially expressed proteins comparing the three treatment groups with controls. CONCLUSION: These findings demonstrated a promising detection specificity and treatment efficacy for our system (SiNPs-TZ, 1:8 Hc-TZ), encouraging its potential use as a new theranostic agent for HER2-positive BC lesions. In addition, proteomic profile confirmed that a set of proteins, related to tumor aggressiveness, were positively affected by targeted nanoparticles.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Portadores de Fármacos/química , Nanopartículas/química , Radiofármacos/química , Receptor ErbB-2/metabolismo , Dióxido de Silicio/química , Tecnecio/química , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Endocitosis , Femenino , Fluoresceína-5-Isotiocianato/química , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Proteoma/metabolismo , Proteómica , Radiofármacos/farmacocinética , Tecnecio/farmacocinética , Distribución Tisular/efectos de los fármacos , Tomografía Computarizada de Emisión de Fotón Único , Resultado del Tratamiento
3.
mBio ; 11(4)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788380

RESUMEN

Protein ubiquitylation regulates not only endocellular trafficking and proteasomal degradation but also the catalytic activity of enzymes. In Saccharomyces cerevisiae, we analyzed the composition of the ubiquitylated proteomes in strains lacking acetyltransferase Gcn5p, Ub-protease Ubp8p, or both to understand their involvement in the regulation of protein ubiquitylation. We analyzed His6Ub proteins with a proteomic approach coupling micro-liquid chromatography and tandem mass spectrometry (µLC-MS/MS) in gcn5Δ, ubp8Δ and ubp8Δ gcn5Δ strains. The Ub-proteome altered in the absence of Gcn5p, Ubp8p, or both was characterized, showing that 43% of the proteins was shared in all strains, suggesting their functional relationship. Remarkably, all major glycolytic enzymes showed increased ubiquitylation. Phosphofructokinase 1, the key enzyme of glycolytic flux, showed a higher and altered pattern of ubiquitylation in gcn5Δ and ubp8Δ strains. Severe defects of growth in poor sugar and altered glucose consumption confirmed a direct role of Gcn5p and Ubp8p in affecting the REDOX balance of the cell.IMPORTANCE We propose a study showing a novel role of Gcn5p and Ubp8p in the process of ubiquitylation of the yeast proteome which includes main glycolytic enzymes. Interestingly, in the absence of Gcn5p and Ubp8p glucose consumption and redox balance were altered in yeast. We believe that these results and the role of Gcn5p and Ubp8p in sugar metabolism might open new perspectives of research leading to novel protocols for counteracting the enhanced glycolysis in tumors.


Asunto(s)
Endopeptidasas/metabolismo , Fermentación , Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinación , Endopeptidasas/genética , Regulación Fúngica de la Expresión Génica , Glucólisis , Histona Acetiltransferasas/genética , Fosforilación , Proteómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Sci Rep ; 8(1): 4285, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511294

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 7(1): 13417, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042637

RESUMEN

The protein ataxin-3 carries a polyglutamine stretch close to the C-terminus that triggers a neurodegenerative disease in humans when its length exceeds a critical threshold. A role as a transcriptional regulator but also as a ubiquitin hydrolase has been proposed for this protein. Here, we report that, when expressed in the yeast Pichia pastoris, full-length ataxin-3 enabled almost normal growth at 37 °C, well above the physiological optimum of 30 °C. The N-terminal Josephin domain (JD) was also effective but significantly less, whereas catalytically inactive JD was completely ineffective. Based on MudPIT proteomic analysis, we observed that the strain expressing full-length, functional ataxin-3 displayed persistent upregulation of enzymes involved in mitochondrial energy metabolism during growth at 37 °C compared with the strain transformed with the empty vector. Concurrently, in the transformed strain intracellular ATP levels at 37 °C were even higher than normal ones at 30 °C. Elevated ATP was also paralleled by upregulation of enzymes involved in both protein biosynthesis and biosynthetic pathways, as well as of several stress-induced proteins. A similar pattern was observed when comparing a strain expressing JD with another expressing its catalytically inactive counterpart. We suggest that such effects mostly result from mechanisms of transcriptional regulation.


Asunto(s)
Ataxina-3/genética , Proteínas Fúngicas/genética , Respuesta al Choque Térmico , Pichia/metabolismo , Adenosina Trifosfato/metabolismo , Ataxina-3/química , Ataxina-3/metabolismo , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Pichia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA