Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 483(7388): 169-75, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398555

RESUMEN

Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.


Asunto(s)
Evolución Molecular , Especiación Genética , Genoma/genética , Gorilla gorilla/genética , Animales , Femenino , Regulación de la Expresión Génica , Variación Genética/genética , Genómica , Humanos , Macaca mulatta/genética , Datos de Secuencia Molecular , Pan troglodytes/genética , Filogenia , Pongo/genética , Proteínas/genética , Alineación de Secuencia , Especificidad de la Especie , Transcripción Genética
2.
Eur J Hum Genet ; 28(8): 1066-1077, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32238909

RESUMEN

Next generation sequencing provides an important opportunity for improved diagnosis in epilepsy. To date, the majority of diagnostic genetic testing is conducted in the paediatric arena, while the utility of such testing is less well understood in adults with epilepsy. We conducted whole exome sequencing (WES) and copy number variant analyses in an Irish cohort of 101 people with epilepsy and co-morbid intellectual disability to compare the diagnostic yield of genomic testing between adult and paediatric patients. Variant interpretation followed American College of Medical Genetics and Genomics (ACMG) guidelines. We demonstrate that WES, in combination with array-comparative genomic hybridisation, provides a diagnostic rate of 27% in unrelated adult epilepsy patients and 42% in unrelated paediatric patients. We observe a 2.7% rate of ACMG-defined incidental findings. Our findings indicate that WES has similar utility in both adult and paediatric cohorts and is appropriate for diagnostic testing in both epilepsy patient groups.


Asunto(s)
Epilepsia/genética , Pruebas Genéticas/métodos , Discapacidad Intelectual/genética , Adolescente , Adulto , Niño , Preescolar , Comorbilidad , Hibridación Genómica Comparativa/métodos , Hibridación Genómica Comparativa/normas , Epilepsia/diagnóstico , Epilepsia/epidemiología , Femenino , Pruebas Genéticas/normas , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/epidemiología , Masculino , Persona de Mediana Edad , Mutación , Sensibilidad y Especificidad , Secuenciación del Exoma/métodos , Secuenciación del Exoma/normas
3.
NPJ Genom Med ; 4: 31, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31814998

RESUMEN

The developmental and epileptic encephalopathies (DEE) are a group of rare, severe neurodevelopmental disorders, where even the most thorough sequencing studies leave 60-65% of patients without a molecular diagnosis. Here, we explore the incompleteness of transcript models used for exome and genome analysis as one potential explanation for a lack of current diagnoses. Therefore, we have updated the GENCODE gene annotation for 191 epilepsy-associated genes, using human brain-derived transcriptomic libraries and other data to build 3,550 putative transcript models. Our annotations increase the transcriptional 'footprint' of these genes by over 674 kb. Using SCN1A as a case study, due to its close phenotype/genotype correlation with Dravet syndrome, we screened 122 people with Dravet syndrome or a similar phenotype with a panel of exon sequences representing eight established genes and identified two de novo SCN1A variants that now - through improved gene annotation - are ascribed to residing among our exons. These two (from 122 screened people, 1.6%) molecular diagnoses carry significant clinical implications. Furthermore, we identified a previously classified SCN1A intronic Dravet syndrome-associated variant that now lies within a deeply conserved exon. Our findings illustrate the potential gains of thorough gene annotation in improving diagnostic yields for genetic disorders.

4.
Genetica ; 120(1-3): 213-22, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15088659

RESUMEN

The Drosophila simulans per gene is polymorphic for the length of a repeat that encodes a series of Thr-Gly pairs. We have examined the circadian behaviour of flies derived from isofemale lines that carry the major variants, and find some significant differences in the way that the clock responds to temperature challenge, that might relate to the observed frequencies of these alleles in nature. We also observe that circadian thermal behaviour is also predictably influenced by subtle differences in the temperature of the locality from which these flies have been originally collected. There appear to be species-specific differences in the circadian locomotor patterns of D. melanogaster and D. simulans and in the way they may respond to temperature. Using chimeric per transgenes which carry the different species Thr-Gly fragments, we have been able to identify components of the behaviour that are modulated by this region of the PER protein.


Asunto(s)
Ritmo Circadiano , Drosophila/genética , Proteínas Nucleares/genética , Alelos , Animales , Drosophila/fisiología , Proteínas de Drosophila , Francia , Glicina/química , Proteínas Circadianas Period , Polimorfismo Genético , Especificidad de la Especie , Temperatura , Treonina/química , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA