Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1797(6-7): 878-89, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307489

RESUMEN

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Asunto(s)
Antioxidantes/farmacología , Cardiolipinas/metabolismo , Ácidos Grasos/metabolismo , Plastoquinona/análogos & derivados , Animales , Antioxidantes/química , Cardiolipinas/química , Diseño de Fármacos , Humanos , Técnicas In Vitro , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Simulación de Dinámica Molecular , Oxidación-Reducción , Plastoquinona/química , Plastoquinona/farmacología , Ratas
2.
Pharm Res ; 28(11): 2883-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21671134

RESUMEN

PURPOSE: To develop effective mitochondria-targeted antioxidants composed entirely of natural constituents. METHODS: Novel mitochondria-targeted antioxidants were synthesized containing plant electron carrier and antioxidant plastoquinone conjugated by nonyloxycarbonylmethyl residue with berberine or palmatine, penetrating cations of plant origin. These compounds, SkQBerb and SkQPalm, were tested in model planar phospholipid membranes and micelles, liposomes, isolated mitochondria and living cells. RESULTS: SkQBerb and SkQPalm penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in mitochondria isolated or in living human cells in culture. Reduced forms of SkQBerb and SkQPalm as well as C10Berb and C10Palm (SkQBerb and SkQPalm analogs lacking plastoquinol moiety) revealed radical scavenging activity in lipid micelles and liposomes, while oxidized forms were inactive. In isolated mitochondria and in living cells, berberine and palmatine moieties were not reduced, so antioxidant activity of C10Berb and C10Palm was not detected. SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations; their prooxidant effect was observed at 1,000 times higher concentrations. In human cell cuture, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. CONCLUSION: This is the first successful attempt to construct mitochondria-targeted antioxidants composed entirely of natural components, namely plastoquinone, nonyl, acetyl and berberine or palmatine residues.


Asunto(s)
Antioxidantes/química , Alcaloides de Berberina/química , Berberina/química , Sistemas de Liberación de Medicamentos , Terapia Molecular Dirigida , Preparaciones de Plantas/síntesis química , Plastoquinona/síntesis química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Berberina/metabolismo , Berberina/farmacología , Alcaloides de Berberina/metabolismo , Alcaloides de Berberina/farmacología , Composición de Medicamentos , Fibroblastos , Células HeLa , Humanos , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Químicos , Fitoterapia , Preparaciones de Plantas/química , Preparaciones de Plantas/metabolismo , Preparaciones de Plantas/farmacología , Plastoquinona/análogos & derivados , Plastoquinona/química , Plastoquinona/farmacología
3.
Biochim Biophys Acta ; 1787(5): 437-61, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19159610

RESUMEN

Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias/fisiología , Envejecimiento/efectos de los fármacos , Animales , Antioxidantes/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/fisiología , Transporte de Electrón/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/fisiología , Oxidantes/farmacología , Oxidación-Reducción , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Ratas , Ubiquinona/fisiología
4.
Aging (Albany NY) ; 1(5): 481-9, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20195487

RESUMEN

The chain-breaking antioxidant activities of reduced form of novel type of geroprotectors, mitochondria-targeted quinones (QH(2)) have quantitatively been measured for the first time. To this end, the chain peroxidation of methyl linoleate (ML) in Triton micelles was used as a kinetic testing model. The studied QH(2) were lipophilic triphenylphosphonium cations conjugated by an aliphatic linker to an antioxidant, i.e. a ubiquinol moiety (MitoQH(2)) or plastoquinol moiety (SkQH(2)). The antioxidant activity was characterized by the rate constant k(1) for the reaction between QH(2) and the lipid peroxyl radical (LO(2) (.)) originated from ML: QH(2) + LO(2) (.) --> HQ(.) + LOOH. All the tested QH(2) displayed a pronounced antioxidant activity. The oxidized forms of the same compounds did not inhibit ML peroxidation. The value of k(1) for SkQH(2) far exceeded k(1) for MitoQH(2). For the biologically active geroprotectors SkQ1H(2), the k(1) value found to be as high as 2.2 x 10(5) M(-) (1)s(-) (1), whereas for MitoQH(2), it was 0.58 x 10(5) M(-) (1)s(-) (1). The kinetic behavior of QH(2) suggested that SkQ1H(2) can rather easily diffuse through lipid-water microheterogeneous systems.


Asunto(s)
Antioxidantes/química , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Ubiquinona/análogos & derivados , Antioxidantes/farmacología , Mitocondrias/metabolismo , Estructura Molecular , Oxidación-Reducción , Relación Estructura-Actividad , Ubiquinona/química , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA