Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(17): 177401, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570423

RESUMEN

We investigate the magnetic field dependent photophysics of individual nitrogen-vacancy (NV) color centers in diamond under cryogenic conditions. At distinct magnetic fields, we observe significant reductions in the NV photoluminescence rate, which indicate a marked decrease in the optical readout efficiency of the NV's ground state spin. We assign these dips to excited state level anticrossings, which occur at magnetic fields that strongly depend on the effective, local strain environment of the NV center. Our results offer new insights into the structure of the NVs' excited states and a new tool for their effective characterization. Using this tool, we observe strong indications for strain-dependent variations of the NV's orbital g factor, obtain new insights into NV charge state dynamics, and draw important conclusions regarding the applicability of NV centers for low-temperature quantum sensing.

2.
Sensors (Basel) ; 18(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404146

RESUMEN

We report on direct, real-space imaging of the stray magnetic field above a micro-scale disc of a thin film of the high-temperature superconductor YBa2Cu3O7-δ (YBCO) using scanning single spin magnetometry. Our experiments yield a direct measurement of the sample's London penetration depth and allow for a quantitative reconstruction of the supercurrents flowing in the sample as a result of Meissner screening. These results show the potential of scanning single spin magnetometry for studies of the nanoscale magnetic properties of thin-film superconductors, which could be readily extended to elevated temperatures or magnetic fields.

3.
Micromachines (Basel) ; 9(4)2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30424082

RESUMEN

Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an approach to conveniently fabricate such thin membranes with up to about one millimeter in size. We use commercially available diamond plates (thickness 50 µ m) in an inductively coupled reactive ion etching process which is based on argon, oxygen and SF 6 . We thus avoid using toxic, corrosive feed gases and add an alternative to previously presented recipes involving chlorine-based etching steps. Our membranes are smooth (RMS roughness <1 nm) and show moderate thickness variation (central part: <1 µ m over ≈200 × 200 µ m 2 ). Due to an improved etch mask geometry, our membranes stay reliably attached to the diamond plate in our chlorine-based as well as SF 6 -based processes. Our results thus open the route towards higher reliability in diamond device fabrication and up-scaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA