Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36477354

RESUMEN

Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by two multi-allelic and independent loci, S and Z. Despite intense research efforts in the last decades, the genes that determine the initial recognition mechanism are yet to be identified. Here, we report the fine-mapping of the Z-locus in perennial ryegrass (Lolium perenne L.) and provide evidence that the pollen and stigma components are determined by two genes encoding DUF247 domain proteins (ZDUF247-I and ZDUF247-II) and the gene sZ, respectively. The pollen and stigma determinants are located side-by-side and were genetically linked in 10,245 individuals of two independent mapping populations segregating for Z. Moreover, they exhibited high allelic diversity as well as tissue-specific gene expression, matching the expected characteristics of SI determinants known from other systems. Revisiting the S-locus using the latest high-quality whole-genome assemblies revealed a similar gene composition and structure as found for Z, supporting the hypothesis of a duplicated origin of the two-locus SI system of grasses. Ultimately, comparative genomic analyses across a wide range of self-compatible and self-incompatible Poaceae species revealed that the absence of a functional copy of at least one of the six putative SI determinants is accompanied by a self-compatible phenotype. Our study provides new insights into the origin and evolution of the unique gametophytic SI system in one of the largest and economically most important plant families.


Asunto(s)
Lolium , Poaceae , Poaceae/genética , Lolium/genética , Polen/genética , Plantas , Genómica
2.
Plants (Basel) ; 11(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956532

RESUMEN

Genetic transformation of perennial ryegrass (Lolium perenne L.) is critical for fundamental and translational research in this important grass species. It often relies on Agrobacterium-mediated transformation of callus tissue. However, callus induction is restricted to a few genotypes that respond well to tissue culture. Here, we report callus induction from different perennial ryegrass genotypes and explants, such as shoot tips, seeds, and anthers, which were transformed with several plasmids for functional genomics. ß-glucuronidase (GUS) histochemical staining showed the LmdsRNAbp promoter sequence was active in stigmas, spikelets, anthers, and leaves. We also transformed calli with plasmids allowing gene silencing and gene knock-out using RNA interference and CRISPR/Cas9, respectively, for which genotypic and phenotypic investigations are ongoing. Using 19 different constructs, 262 transgenic events were regenerated. Moreover, the protocol regenerated a doubled haploid transgenic event from anther-derived calli. This work provides a proof-of-concept method for expanding the range of genotypes amenable to transformation, thus, serving research and breeding initiatives to improve this important grass crop for forage and recreation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA