Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ther ; 26(4): 976-985, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29503204

RESUMEN

Several recent clinical trials have successfully incorporated a costimulatory domain derived from either CD28 or 4-1BB with the original CD3ζ T cell activating domain to form second-generation chimeric antigen receptors (CARs) that can increase the responsiveness and survival of CAR-engineered T (CAR-T) cells. However, a rigorous assessment of the individual benefits of these costimulatory components relative to the in vivo performance of infused T cells in patients is still lacking. Therefore, we have designed a study that allows us to investigate and compare the impact of different costimulatory signal domains on CAR-T cells in vivo. Patients with B cell leukemia were infused with a mixture of two types of CD19-specific CAR-T cells, individually bearing CD28 (28ζ) and 4-1BB (BBζ) costimulatory signaling domains. We found that such a clinical procedure was feasible and safe. Complete remission (CR) was observed in five of seven enrolled patients, with two patients exhibiting durable CR lasting more than 15 months. The in vivo expansion pattern of 28ζ and BBζ CAR-T cells varied significantly among individual patients. These results confirm a feasible method of comparing different CAR designs within individual patients, potentially offering objective insights that may facilitate the development of optimal CAR-T cell-based immunotherapies.


Asunto(s)
Antígenos CD28/inmunología , Inmunoterapia Adoptiva , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Adolescente , Adulto , Anciano , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígenos CD28/metabolismo , Niño , Preescolar , Terapia Combinada , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Retroviridae/genética , Resultado del Tratamiento , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
2.
Biophys J ; 115(6): 1116-1129, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30197180

RESUMEN

Chimeric antigen receptors (CARs) have recently been approved for the treatment of hematological malignancies, but our lack of understanding of the basic mechanisms that activate these proteins has made it difficult to optimize and control CAR-based therapies. In this study, we use phosphoproteomic mass spectrometry and mechanistic computational modeling to quantify the in vitro kinetics of individual tyrosine phosphorylation on a variety of CARs. We show that each of the 10 tyrosine sites on the CD28-CD3ζ CAR is phosphorylated by lymphocyte-specific protein-tyrosine kinase (LCK) with distinct kinetics. The addition of CD28 at the N-terminal of CD3ζ increases the overall rate of CD3ζ phosphorylation. Our computational model identifies that LCK phosphorylates CD3ζ through a mechanism of competitive inhibition. This model agrees with previously published data in the literature and predicts that phosphatases in this system interact with CD3ζ through a similar mechanism of competitive inhibition. This quantitative modeling framework can be used to better understand CAR signaling and T cell activation.


Asunto(s)
Simulación por Computador , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Antígenos CD28/química , Antígenos CD28/metabolismo , Cinética , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Mutación , Fosforilación , Proteómica , Receptores de Antígenos/química , Receptores de Antígenos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato , Tirosina/metabolismo
3.
Biotechnol Bioeng ; 115(6): 1403-1415, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29457630

RESUMEN

Blood vessel development is critical for the continued growth and progression of solid tumors and, therefore, makes an attractive target for improving cancer therapy. Indeed, vascular-targeted therapies have been extensively explored but they have shown minimal efficacy as monotherapies. Combretastatin A4 (CA-4) is a tubulin-binding vascular disrupting agent that selectively targets the established tumor endothelium, causing rapid vascular beak down. Despite its potent anticancer potential, the drug has dose-limiting side effects, particularly in the form of cardiovascular toxicity. Furthermore, its poor aqueous solubility and the resulting limited bioavailability hinder its antitumor activity in the clinic. To improve the therapeutic efficacy of CA-4, we investigated its application as a combination therapy with doxorubicin (Dox) in a tumor vasculature targeted delivery vehicle: peptide-modified cross-linked multilamellar liposomal vesicles (cMLVs). In vitro cell culture studies showed that a tumor vasculature-targeting peptide, RIF7, could facilitate higher cellular uptake of drug-loaded cMLVs, and consequently enhance the antitumor efficacy in both drug resistant B16 mouse melanoma and human MDA-MB-231 breast cancer cells. In vivo, upon intravenous injection, targeted cMLVs could efficiently deliver both Dox and CA-4 to significantly slow tumor growth through the specific interaction of the targeting peptide with its receptor on the surface of tumor vasculature. This study demonstrates the potential of our novel targeted combination therapy delivery vehicle to improve the outcome of cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Estilbenos/administración & dosificación , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Quimioterapia Combinada/métodos , Humanos , Ratones , Modelos Biológicos , Estilbenos/farmacocinética , Estilbenos/farmacología
4.
Mol Ther ; 25(12): 2607-2619, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28919377

RESUMEN

The therapeutic limitations of conventional chemotherapeutic drugs include chemo-resistance, tumor recurrence, and metastasis. Numerous nanoparticle-based active targeting approaches have emerged to enhance the intracellular concentration of drugs in tumor cells; however, efficient delivery of these systems to the tumor site while sparing healthy tissue remains elusive. Recently, much attention has been given to human immune-cell-directed nanoparticle drug delivery, because immune cells can traffic to the tumor and inflammatory sites. Natural killer cells are a subset of cytotoxic lymphocytes that play critical roles in cancer immunosurveillance. Engineering of the human natural killer cell line, NK92, to express chimeric antigen receptors to redirect their antitumor specificity has shown significant promise. We demonstrate that the efficacy of chemotherapy can be enhanced in vitro and in vivo while reducing off-target toxicity by using chimeric antigen receptor-engineered NK92 cells as carriers to direct drug-loaded nanoparticles to the target site.


Asunto(s)
Antígenos de Neoplasias/inmunología , Portadores de Fármacos , Inmunoterapia , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias/inmunología , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusión , Animales , Antígenos CD19/genética , Antígenos CD19/inmunología , Antineoplásicos Fitogénicos/administración & dosificación , Línea Celular Tumoral , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Expresión Génica , Humanos , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Liposomas , Ratones , Ratones Noqueados , Nanomedicina , Nanopartículas , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Paclitaxel/administración & dosificación , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
5.
iScience ; 23(4): 101023, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32325413

RESUMEN

Chimeric antigen receptors (CARs) are engineered receptors that mediate T cell activation. CARs are comprised of activating and co-stimulatory intracellular signaling domains derived from endogenous T cells that initiate signaling required for T cell activation, including ERK activation through the MAPK pathway. Understanding the mechanisms by which co-stimulatory domains influence signaling can help guide the design of next-generation CARs. Therefore, we constructed an experimentally validated computational model of anti-CD19 CARs in T cells bearing the CD3ζ domain alone or in combination with CD28. We performed a systematic analysis to explore the different mechanisms of CD28 co-stimulation on the ERK response time. Comparing these model simulations with experimental data indicates that CD28 primarily influences ERK activation by enhancing the phosphorylation kinetics of CD3ζ. Overall, we present a mechanistic mathematical modeling framework that can be used to gain insights into the mechanism of CAR T cell activation and produce new testable hypotheses.

6.
JCO Clin Cancer Inform ; 3: 1-8, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689404

RESUMEN

T cells in the immune system are activated by binding to foreign peptides (from an external pathogen) or mutant peptide (derived from endogenous proteins) displayed on the surface of a diseased cell. This triggers a series of intracellular signaling pathways, which ultimately dictate the response of the T cell. The insights from computational models have greatly improved our understanding of the mechanisms that control T-cell activation. In this review, we focus on the use of ordinary differential equation-based mechanistic models to study T-cell activation. We highlight several examples that demonstrate the models' utility in answering specific questions related to T-cell activation signaling, from antigen discrimination to the feedback mechanisms that initiate transcription factor activation. In addition, we describe other modeling approaches that can be combined with mechanistic models to bridge time scales and better understand how intracellular signaling events, which occur on the order of seconds to minutes, influence phenotypic responses of T-cell activation, which occur on the order of hours to days. Overall, through concrete examples, we emphasize how computational modeling can be used to enable the rational design and optimization of immunotherapies.


Asunto(s)
Susceptibilidad a Enfermedades , Homeostasis , Activación de Linfocitos , Modelos Biológicos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades/inmunología , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Transducción de Señal
7.
Cancer Immunol Res ; 6(7): 812-824, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720380

RESUMEN

One limiting factor of CAR T-cell therapy for treatment of solid cancers is the suppressive tumor microenvironment (TME), which inactivates the function of tumor-infiltrating lymphocytes (TIL) through the production of immunosuppressive molecules, such as adenosine. Adenosine inhibits the function of CD4+ and CD8+ T cells by binding to and activating the A2a adenosine receptor (A2aR) expressed on their surface. This suppression pathway can be blocked using the A2aR-specific small molecule antagonist SCH-58261 (SCH), but its applications have been limited owing to difficulties delivering this drug to immune cells within the TME. To overcome this limitation, we used CAR-engineered T cells as active chaperones to deliver SCH-loaded cross-linked, multilamellar liposomal vesicles (cMLV) to tumor-infiltrating T cells deep within the immune suppressive TME. Through in vitro and in vivo studies, we have demonstrated that this system can be used to effectively deliver SCH to the TME. This treatment may prevent or rescue the emergence of hypofunctional CAR-T cells within the TME. Cancer Immunol Res; 6(7); 812-24. ©2018 AACR.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Nanopartículas , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Biomarcadores , Línea Celular , Modelos Animales de Enfermedad , Femenino , Inmunofenotipificación , Inmunoterapia Adoptiva , Ratones , Ratones Transgénicos , Nanopartículas/química , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Cell Mol Bioeng ; 9: 351-367, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547268

RESUMEN

Lymphocyte-specific protein tyrosine kinase (LCK) is a key activator of T cells; however, little is known about the specific autoregulatory mechanisms that control its activity. We have constructed a model of LCK autophosphorylation and phosphorylation by the regulating kinase CSK. The model was fit to existing experimental data in the literature that presents an in vitro reconstituted membrane system, which provides more physiologically relevant kinetic measurements than traditional solution-based systems. The model is able to predict a robust mechanism of LCK autoregulation. It provides insights into the molecular causes of key site-specific phosphorylation differences between distinct experimental conditions. Probing the model also provides new hypotheses regarding the influence of individual binding and catalytic rates, which can be tested experimentally. This minimal model is required to elucidate the mechanistic interactions of LCK and CSK and can be further expanded to better understand T cell activation from a systems perspective. Our computational model enables the evaluation of LCK protein interactions that mediate T cell activation on a more quantitative level, providing new insights and testable hypotheses.

9.
Artículo en Inglés | MEDLINE | ID: mdl-28713587

RESUMEN

Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.

10.
Curr Pharm Des ; 21(22): 3248-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26027561

RESUMEN

Adeno-associated virus (AAV) vectors are promising human gene delivery vehicles due to their ability to establish long-term gene expression in a wide variety of target tissues; however, the broad native viral tropism raises concerns over the feasibility and safety of their systemic administration. To overcome this issue, much effort has been made to redirect AAVs toward specific tissues. This review presents several design strategies that have been applied to generate AAVs that target specific tissues and cells while inhibiting the transduction of non-target tissues. Multiple methods of vector capsid engineering have shown promise in vitro, including indirect targeting by adaptor systems and direct targeting by the insertion of antibodies or receptor-specific small peptide motifs. Other strategies, including creating mosaic or chimeric capsids and directed evolution, have also been used to successfully retarget AAV vectors. This research will further expand the clinical applications of AAV vectors by enhancing the control over tissue-specific gene delivery.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA