Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 10772-10778, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37988604

RESUMEN

Freestanding films provide a versatile platform for materials engineering thanks to additional structural motifs not found in films with a substrate. A ubiquitous example is wrinkles, yet little is known about how they can develop over as fast as a few picoseconds due to a lack of experimental probes to visualize their dynamics in real time on the nanoscopic scale. Here, we use time-resolved electron diffraction to directly observe light-activated wrinkling formation in freestanding La2/3Ca1/3MnO3 films. Via a "lock-in" analysis of oscillations in the diffraction peak position, intensity, and width, we quantitatively reconstructed how wrinkles develop on the time scale of lattice vibration. Contrary to the common assumption of fixed boundary conditions, we found that wrinkle development is associated with ultrafast delamination at the film boundaries. Our work provides a generic protocol to quantify wrinkling dynamics in freestanding films and highlights the importance of the film-substrate interaction in determining the properties of freestanding structures.

2.
Opt Express ; 30(14): 24186-24206, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236979

RESUMEN

Despite the popularity and ubiquity of the tilted-pulse-front technique for single-cycle terahertz (THz) pulse generation, there is a deficit of experimental studies comprehensively mapping out the dependence of the performance on key setup parameters. The most critical parameters include the pulse-front tilt, the effective length of the pump pulse propagation within the crystal as well as effective length over which the THz beam interacts with the pump before it spatially walks off. Therefore, we investigate the impact of these parameters on the conversion efficiency and the shape of the THz beam via systematically scanning the 5D parameter space spanned by pump fluence, pulse-front-tilt, crystal-position (2D), and the pump size experimentally. We verify predictions so far only made by theory regarding the optimum interaction lengths and map out the impact of cascading on the THz radiation generation process. Furthermore, distortions imposed on the spatial THz beam profile for larger than optimum interaction lengths are observed. Finally, we identify the most sensitive parameters and, based on our findings, propose a robust optimization strategy for tilted-pulse-front THz setups. These findings are relevant for all THz strong-field applications in high demand of robust high-energy table-top single-cycle THz sources such as THz plasmonics, high-harmonic generation in solids as well as novel particle accelerators and beam manipulators.

3.
Phys Rev Lett ; 123(9): 097601, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524450

RESUMEN

Complex systems, which consist of a large number of interacting constituents, often exhibit universal behavior near a phase transition. A slowdown of certain dynamical observables is one such recurring feature found in a vast array of contexts. This phenomenon, known as critical slowing-down, is well studied mostly in thermodynamic phase transitions. However, it is less understood in highly nonequilibrium settings, where the time it takes to traverse the phase boundary becomes comparable to the timescale of dynamical fluctuations. Using transient optical spectroscopy and femtosecond electron diffraction, we studied a photoinduced transition of a model charge-density-wave (CDW) compound LaTe_{3}. We observed that it takes the longest time to suppress the order parameter at the threshold photoexcitation density, where the CDW transiently vanishes. This finding can be captured by generalizing the time-dependent Landau theory to a system far from equilibrium. The experimental observation and theoretical understanding of dynamical slowing-down may offer insight into other general principles behind nonequilibrium phase transitions in many-body systems.

4.
Nature ; 471(7339): 490-3, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21389987

RESUMEN

Intense femtosecond (10(-15) s) light pulses can be used to transform electronic, magnetic and structural order in condensed-matter systems on timescales of electronic and atomic motion. This technique is particularly useful in the study and in the control of materials whose physical properties are governed by the interactions between multiple degrees of freedom. Time- and angle-resolved photoemission spectroscopy is in this context a direct and comprehensive, energy- and momentum-selective probe of the ultrafast processes that couple to the electronic degrees of freedom. Previously, the capability of such studies to access electron momentum space away from zero momentum was, however, restricted owing to limitations of the available probing photon energy. Here, using femtosecond extreme-ultraviolet pulses delivered by a high-harmonic-generation source, we use time- and angle-resolved photoemission spectroscopy to measure the photoinduced vaporization of a charge-ordered state in the potential excitonic insulator 1T-TiSe(2 )(refs 12, 13). By way of stroboscopic imaging of electronic band dispersions at large momentum, in the vicinity of the edge of the first Brillouin zone, we reveal that the collapse of atomic-scale periodic long-range order happens on a timescale as short as 20 femtoseconds. The surprisingly fast response of the system is assigned to screening by the transient generation of free charge carriers. Similar screening scenarios are likely to be relevant in other photoinduced solid-state transitions and may generally determine the response times. Moreover, as electron states with large momenta govern fundamental electronic properties in condensed matter systems, we anticipate that the experimental advance represented by the present study will be useful to study the ultrafast dynamics and microscopic mechanisms of electronic phenomena in a wide range of materials.

5.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249410

RESUMEN

We present the design and performance of a compact ultrafast electron diffraction instrument. The diffractometer provides a means of examining time-resolved ultrafast dynamical properties of solids. The system's utilization is discussed in terms of instrument parameters and diffraction data from selected condensed matter samples. The difractometer's performance is highlighted in terms of detection sensitivity, instrumental temporal resolution, and the electron beam transverse coherence length. Following specific details of the construction, we present a practical discussion of parameters such as repetition rate and provide advice on general construction approaches for laboratory-based, keV ultrafast electron diffractometers. In addition, design guidance for constructing a compact electron gun source that is well-suited for studying diffraction from hard condensed matter is given. A unique data acquisition scheme, utilizing high laser repetition rates, is presented.

6.
Rev Sci Instrum ; 91(4): 043102, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357712

RESUMEN

Performing time- and angle-resolved photoemission (tr-ARPES) spectroscopy at high momenta necessitates extreme ultraviolet laser pulses, which are typically produced via high harmonic generation (HHG). Despite recent advances, HHG-based setups still require large pulse energies (from hundreds of µJ to mJ) and their energy resolution is limited to tens of meV. Here, we present a novel 11 eV tr-ARPES setup that generates a flux of 5 × 1010 photons/s and achieves an unprecedented energy resolution of 16 meV. It can be operated at high repetition rates (up to 250 kHz) while using input pulse energies down to 3 µJ. We demonstrate these unique capabilities by simultaneously capturing the energy and momentum resolved dynamics in two well-separated momentum space regions of a charge density wave material ErTe3. This novel setup offers the opportunity to study the non-equilibrium band structure of solids with exceptional energy and time resolutions at high repetition rates.

7.
Nat Commun ; 10(1): 3535, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388015

RESUMEN

High harmonic generation of ultrafast laser pulses can be used to perform angle-resolved photoemission spectroscopy (ARPES) to map the electronic band structure of materials with femtosecond time resolution. However, currently it is difficult to reach high momenta with narrow energy resolution. Here, we combine a gas phase extreme ultraviolet (XUV) femtosecond light source, an XUV monochromator, and a time-of-flight electron analyzer to develop XUV-based time-resolved ARPES. Our technique can produce tunable photon energy between 24-33 eV with an unprecedented energy resolution of 30 meV and time resolution of 200 fs. This technique enables time-, energy- and momentum-resolved investigation of the nonequilibrium dynamics of electrons in materials with a full access to their first Brillouin zone. We evaluate the performance of this setup through exemplary measurements on various quantum materials, including WTe2, WSe2, TiSe2, and Bi2Sr2CaCu2O8+δ.

8.
Sci Adv ; 4(10): eaau5501, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30345365

RESUMEN

Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photoinjected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA