Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850162

RESUMEN

MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs). In this study, we demonstrate the critical role of the miRNA/miRNA* duplex region in the processing of miRNA precursors. We observed that endogenous MIRNAs frequently experience suboptimal processing in vivo due to mismatches in the miRNA/miRNA* duplex, a key region that fine-tunes miRNA levels. Enhancing the interaction energy of the miRNA/miRNA* duplex in two-step MIRNAs results in a substantial increase in miRNA levels. Conversely, sequential MIRNAs display distinct and specific requirements for the miRNA/miRNA* duplexes along their foldback structure. Our work establishes a connection between the miRNA/miRNA* structure and precursor processing mechanisms. Furthermore, we reveal a link between the biological function of miRNAs and the processing mechanism of their precursors with the evolution of plant miRNA/miRNA* duplex structures.

2.
Plant Cell ; 29(6): 1248-1261, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28550151

RESUMEN

MicroRNAs (miRNAs) are endogenous small RNAs that recognize target sequences by base complementarity and play a role in the regulation of target gene expression. They are processed from longer precursor molecules that harbor a fold-back structure. Plant miRNA precursors are quite variable in size and shape, and are recognized by the processing machinery in different ways. However, ancient miRNAs and their binding sites in target genes are conserved during evolution. Here, we designed a strategy to systematically analyze MIRNAs from different species generating a graphical representation of the conservation of the primary sequence and secondary structure. We found that plant MIRNAs have evolutionary footprints that go beyond the small RNA sequence itself, yet their location along the precursor depends on the specific MIRNA We show that these conserved regions correspond to structural determinants recognized during the biogenesis of plant miRNAs. Furthermore, we found that the members of the miR166 family have unusual conservation patterns and demonstrated that the recognition of these precursors in vivo differs from other known miRNAs. Our results describe a link between the evolutionary conservation of plant MIRNAs and the mechanisms underlying the biogenesis of these small RNAs and show that the MIRNA pattern of conservation can be used to infer the mode of miRNA biogenesis.


Asunto(s)
Evolución Molecular , MicroARNs/genética , ARN de Planta/genética , Regulación de la Expresión Génica de las Plantas/genética , Estabilidad del ARN
3.
Nat Commun ; 11(1): 5320, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087730

RESUMEN

MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , ARN de Planta/biosíntesis , ARN de Planta/genética , Proteínas de Arabidopsis/metabolismo , Disparidad de Par Base , Proteínas de Ciclo Celular/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , MicroARNs/química , MicroARNs/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Polimorfismo de Nucleótido Simple , Procesamiento Postranscripcional del ARN , ARN de Planta/química , Ribonucleasa III/metabolismo
4.
Methods Mol Biol ; 1932: 261-283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701507

RESUMEN

MicroRNAs (miRNA) are small RNAs of 20-22 nt that regulate diverse biological pathways through the modulation of gene expression. miRNAs recognize target RNAs by base complementarity and guide them to degradation or translational arrest. They are transcribed as longer precursors with extensive secondary structures. In plants, these precursors are processed by a complex harboring DICER-LIKE1 (DCL1), which cuts on the precursor stem region to release the mature miRNA together with the miRNA*. In both plants and animals, the miRNA precursors contain spatial clues that determine the position of the miRNA along their sequences. DCL1 is assisted by several proteins, such as the double-stranded RNA binding protein, HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). The precise biogenesis of miRNAs is of utter importance since it determines the exact nucleotide sequence of the mature small RNAs and therefore the identity of the target genes. miRNA processing itself can be regulated and therefore can determine the final small RNA levels and activity. Here, we describe methods to analyze miRNA processing intermediates in plants. These approaches can be used in wild-type or mutant plants, as well as in plants grown under different conditions, allowing a molecular characterization of the miRNA biogenesis from the RNA precursor perspective.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , MicroARNs/genética , ARN de Planta/genética , ARN Helicasas DEAD-box/genética , Precursores del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas Serrate-Jagged/genética
5.
Sci Rep ; 8(1): 13447, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194309

RESUMEN

An increase in crop yield is essential to reassure food security to meet the accelerating global demand. Several genetic modifications can increase organ size, which in turn might boost crop yield. Still, only in a few cases their performance has been evaluated under stress conditions. MicroRNA miR396 repress the expression of GROWTH-REGULATING FACTOR (GRF) genes that codes for transcription factors that promote organ growth. Here, we show that both Arabidopsis thaliana At-GRF2 and At-GRF3 genes resistant to miR396 activity (rGRF2 and rGRF3) increased organ size, but only rGRF3 can produce this effect without causing morphological defects. Furthermore, introduction of At-rGRF3 in Brassica oleracea can increase organ size, and when At-rGRF3 homologs from soybean and rice are introduced in Arabidopsis, leaf size is also increased. This suggests that regulation of GRF3 activity by miR396 is important for organ growth in a broad range of species. Plants harboring rGRF3 have larger leaves also under drought stress, a condition that stimulates miR396 accumulation. These plants also showed an increase in the resistance to virulent bacteria, suggesting that the size increment promoted by rGRF3 occurs without an obvious cost on plant defenses. Our findings indicate that rGRF3 can increase plant organ size under both normal and stress conditions and is a valuable tool for biotechnological applications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Tamaño de los Órganos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Hojas de la Planta/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Factores de Transcripción/genética
6.
Plant Signal Behav ; 11(6): e1184809, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27172373

RESUMEN

The combinatory effects of cell proliferation and cell elongation determines the rate at which organs growth. In the root meristematic zone cells both divide and expand, while post-mitotic cells in the elongation zone only expands until they reach their final size. The transcription factors of the GROWTH-REGULATING FACTOR (GRF) class promote cell proliferation in various plant organs. Their expression is restricted to cells with a high proliferative capacity, yet strong downregulation of the GRF activity compromise the plant survival. Part of expression pattern of the GRFs is ensured by the post-transcriptional repression mediated by the conserved microRNA miR396. Here we show the quantitative effects in root growth caused by GRF depletion in a series of transgenic lines with different miR396 levels. We show that high miRNA levels affect cell elongation and proliferation in roots. Detailed analysis suggests that cell proliferation is restricted due to a reduction in cell cycle speed that might result from defects in the accumulation of mitotic cyclins. The results provide insights into the participation of the miRNA-GRF regulatory network in root development.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , MicroARNs/metabolismo , Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Meristema/citología , Meristema/metabolismo , MicroARNs/genética , Mitosis/genética , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA