RESUMEN
Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.
Asunto(s)
Aterosclerosis , Ácidos Grasos Omega-3 , Animales , Colesterol/metabolismo , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico , Ratones , Ratones Noqueados , Ácido Oléico , Receptores de LDL/genética , Aceite de SojaRESUMEN
Sarcoidosis is a systemic disease with unclear etiology characterized by the accumulation of noncaseating, immune granulomas in affected tissues. In cardiac sarcoidosis (CS), white blood cells build up within the heart muscles, causing cardiac abnormalities. Accurate and early diagnosis of CS proves challenging. However, usage of positron emission tomography (PET) imaging, namely 18F-FDG-PET, has proven successful in diagnosing inflammatory cardiomyopathy. This review seeks to examine the role of PET in managing ventricular tachycardia in cardiac sarcoidosis. PET, in conjunction with cardiac magnetic resonance imaging (CMR) is also endorsed as the premier method for diagnosis and management of arrhythmias associated with CS by The Heart Rhythm Society. After a CS diagnosis, risk stratification of ventricular arrhythmias is a necessity given the potential for sudden cardiac death. 18F-FDG-PET has been successful in monitoring disease advancement and treatment responses in CS patients. Early stages of CS are often treated with immunosuppression drugs if there are additional signs of VT. Currently, corticosteroid and anti-arrhythmia compounds: methotrexate, cyclophosphamide, infliximab, amiodarone, and azathioprine are used to suppress inflammation. 18F-FDG-PET has certainly proven to be an incredibly useful and accurate diagnostic tool of CS. While late gadolinium enhancement by CMR is efficient in detecting myocardial necrosis and/or advanced fibrosis scarring, 18F-FDG portrays the increased uptake level of glucose metabolism. In combination PET/MRI has proven to be more successful in improving the efficacy of both scans, addressing their drawbacks, and highlighting their advantages. Managing CS patients is highly involved in detecting inflammatory regions of the heart. Early recognition prevents cardiac abnormality, mainly VT and VF in CS patients, and extends lifespan.
RESUMEN
A high glycemic index (HGI) diet induces hyperglycemia, a risk factor for diseases affecting multiple organ systems. Here, we evaluated tissue-specific adaptations in the liver and retina after feeding HGI diet to mice for 1 or 12 month. In the liver, genes associated with inflammation and fatty acid metabolism were altered within 1 month of HGI diet, whereas 12-month HGI diet-fed group showed dysregulated expression of cytochrome P450 genes and overexpression of lipogenic factors including Srebf1 and Elovl5. In contrast, retinal transcriptome exhibited HGI-related notable alterations in energy metabolism genes only after 12 months. Liver fatty acid profiles in HGI group revealed higher levels of monounsaturated and lower levels of saturated and polyunsaturated fatty acids. Additionally, HGI diet increased blood low-density lipoprotein, and diet-aging interactions affected expression of mitochondrial oxidative phosphorylation genes in the liver and disease-associated genes in retina. Thus, our findings provide new insights into retinal and hepatic adaptive mechanisms to dietary hyperglycemia.
RESUMEN
PURPOSE: Seizure freedom is an important predictor of health-related quality of life (HRQOL) after pediatric epilepsy surgery. This study aimed to identify the pre-operative predictors of HRQOL 2 years after epilepsy surgery in children with drug-resistant epilepsy. METHODS: This multicenter prospective cohort study assessed pre-operative predictors including child (demographics and clinical variables), caregiver (including caregiver depressive and anxiety symptoms) and family characteristics. HRQOL was assessed using the Quality of Life in Childhood Epilepsy Questionnaire (QOLCE)-55 pre-operatively and 2-years after surgery. Univariable linear regression analyses were done to identify significant preoperative predictors of HRQOL 2-years after surgery, followed by multivariable regression. RESULTS: Ninety-five children underwent surgery, mean age was 11.4 (SD=4.2) years, and 59 (62%) were male. Mean QOLCE scores were 57.4 (95%CI: 53.8, 61.0) pre-operatively and 65.6 (95%CI: 62.0, 69.1) after surgery. Univariable regression showed fewer anti-seizure medications (ß=-6.1 [95%CI: -11.2, -1.0], p = 0.019), older age at seizure onset (ß=1.6 [95%CI: 0.8, 2.4], p<0.001), higher pre-operative HRQOL (ß=0.7 [95%CI: 0.5, 0.8], p<0.001), higher family resources (ß=0.6 [95%CI: 0.3, 0.9], p<0.001), better family relationships (ß=1.7 [95%CI: 0.3, 3.1], p = 0.017) and lower family demands (ß=-0.9 [95%CI: -1.5, -0.4], p<0.001) were associated with higher HRQOL after surgery. Caregiver characteristics did not predict HRQOL after surgery (p>0.05). Multivariable regression showed older age at seizure onset (ß=4.6 [95%CI: 1.6, 7.6], p = 0.003) and higher pre-operative HRQOL (ß=10.2 [95%CI: 6.8, 13.6], p<0.001) were associated with higher HRQOL after surgery. CONCLUSION: This study underscores the importance of optimizing pre-operative HRQOL to maximize HRQOL outcome after pediatric epilepsy surgery.
RESUMEN
Very-long-chain polyunsaturated fatty acids (VLCPUFAs; C24-38) constitute a unique class of PUFA that have important biological roles, but the lack of a suitable dietary source has limited research in this field. We produced an n-3 C24-28-rich VLCPUFA-oil concentrated from fish oil to study its bioavailability and physiological functions in C57BL/6J mice. The serum and retinal C24:5 levels increased significantly compared to control after a single-dose gavage, and VLCPUFAs were incorporated into the liver, brain, and eyes after 8-week supplementation. Dietary VLCPUFAs resulted in favorable cardiometabolic changes, and improved electroretinography responses and visual performance. VLCPUFA supplementation changed the expression of genes involved in PPAR signaling pathways. Further in vitro studies demonstrated that the VLCPUFA-oil and chemically synthesized C24:5 are potent agonists for PPARs. The multiple potential beneficial effects of fish oil-derived VLCPUFAs on cardiometabolic risk and eye health in mice support future efforts to develop VLCPUFA-oil into a supplemental therapy.