Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408143

RESUMEN

The world population growth and average life expectancy rise have increased the number of people suffering from non-communicable diseases, namely osteoarthritis, a disorder that causes a significant increase in the years lived with disability. Many people who suffer from osteoarthritis undergo replacement surgery. Despite the relatively high success rate, around 10% of patients require revision surgeries, mostly because existing implant technologies lack sensing devices capable of monitoring the bone-implant interface. Among the several monitoring methodologies already proposed as substitutes for traditional imaging methods, cosurface capacitive sensing systems hold the potential to monitor the bone-implant fixation states, a mandatory capability for long-term implant survival. A multifaceted study is offered here, which covers research on the following points: (1) the ability of a cosurface capacitor network to effectively monitor bone loosening in extended peri-implant regions and according to different stimulation frequencies; (2) the ability of these capacitive architectures to provide effective sensing in interfaces with hydroxyapatite-based layers; (3) the ability to control the operation of cosurface capacitive networks using extracorporeal informatic systems. In vitro tests were performed using a web-based network sensor composed of striped and interdigitated capacitive sensors. Hydroxyapatite-based layers have a minor effect on determining the fixation states; the effective operation of a sensor network-based solution communicating through a web server hosted on Raspberry Pi was shown. Previous studies highlight the inability of current bone-implant fixation monitoring methods to significantly reduce the number of revision surgeries, as well as promising results of capacitive sensing systems to monitor micro-scale and macro-scale bone-interface states. In this study, we found that extracorporeal informatic systems enable continuous patient monitoring using cosurface capacitive networks with or without hydroxyapatite-based layers. Findings presented here represent significant advancements toward the design of future multifunctional smart implants.


Asunto(s)
Durapatita , Osteoartritis , Trasplante Óseo/métodos , Humanos , Prótesis e Implantes , Reoperación/métodos
2.
Front Bioeng Biotechnol ; 10: 912081, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757794

RESUMEN

Implantable medical devices have been developed to provide multifunctional ability to numerous bioapplications. In the scope of orthopaedics, four methodologies were already proposed to design implant technologies: non-instrumented passive implants, non-instrumented active implants, instrumented passive implants and instrumented active implants. Even though bone replacements are among the most performed surgeries worldwide, implant failure rates can still exceed 10%. Controversial positions multiply in the scientific community about the potential of each methodology to minimize the burden related to implant failures. In this perspective paper, we argue that the next technological revolution in the field of implantable bone devices will most likely emerge with instrumented active implants as multifunctional smart devices extracorporeally controlled by clinicians/surgeons. Moreover, we provide a new perspective about implant technology: the essence of instrumented implants is to enclose a hybrid architecture in which optimal implant performances require both smart instrumentation and smart coatings, although the implant controllability must be ensured by extracorporeal systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA