Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sleep ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121093

RESUMEN

Alteration of motor control during REM sleep has been extensively described in sleep disorders, in particular in isolated REM sleep behavior disorder (iRBD) and narcolepsy type 1 (NT1). NT1 is caused by the loss of orexin/hypocretin (ORX) neurons. Unlike in iRBD, the RBD comorbid symptoms of NT1 is not associated with alpha-synucleinopathies. To determine whether the chronic absence of ORX neuropeptides is sufficient to induce RBD symptoms, we analyzed during REM sleep the EMG signal of the prepro-hypocretin knockout mice (ORX-/-), a recognized mouse model of NT1. Then, we evaluated the severity of motor alterations by comparing EMG data of ORX-/- mice to those of mice with a targeted suppression of the sublaterodorsal glutamatergic neurotransmission, a recognized rodent model of iRBD. We found a significant alteration of tonic and phasic components of EMG during REM sleep in ORX-/- mice, with more phasic events and more REM sleep episodes without atonia compared to the control wild-type mice. However, these phasic events were fewer, shorter and less complex in ORX-/- mice compared to the RBD-like ORX-/- mice. We thus show that ORX-deficiency, as seen in NT1, is sufficient to impair muscle atonia during REM sleep with a moderate severity of alteration as compared to isolated RBD mice. As described in NT1 patients, we report a major inter-individual variability in the severity and the frequency of RBD symptoms in ORX-deficient mice.

2.
Sleep ; 41(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522212

RESUMEN

Narcolepsy type 1 is a disabling disorder with four primary symptoms: excessive-daytime-sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. The later three symptoms together with a short rapid eye movement (REM) sleep latency have suggested impairment in REM sleep homeostatic regulation with an enhanced propensity for (i.e. tendency to enter) REM sleep. To test this hypothesis, we challenged REM sleep homeostatic regulation in a recognized model of narcolepsy, the orexin knock-out (Orex-KO) mice and their wild-type (WT) littermates. We first performed 48 hr of REM sleep deprivation using the classic small-platforms-over-water method. We found that narcoleptic mice are similarly REM sleep deprived to WT mice. Although they had shorter sleep latency, Orex-KO mice recovered similarly to WT during the following 10 hr of recovery. Interestingly, Orex-KO mice also had cataplexy episodes immediately after REM sleep deprivation, anticipating REM sleep rebound, at a time of day when cataplexy does not occur in baseline condition. We then evaluated REM sleep propensity using our new automated method of deprivation that performs a specific and efficient REM sleep deprivation. We showed that REM sleep propensity is similar during light phase in Orex-KO and WT mice. However, during the dark phase, REM sleep propensity was not suppressed in Orex-KO mice when hypocretin/orexin neuropeptides are normally released. Altogether our data suggest that in addition to the well-known wake-promoting role of hypocretin/orexin, these neuropeptides would also suppress REM sleep. Therefore, hypocretin/orexin deficiency would facilitate the occurrence of REM sleep at any time of day in an opportunistic manner as seen in human narcolepsy.


Asunto(s)
Homeostasis/fisiología , Narcolepsia/sangre , Narcolepsia/fisiopatología , Orexinas/sangre , Sueño REM/fisiología , Animales , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Narcolepsia/diagnóstico , Neuropéptidos/deficiencia , Orexinas/deficiencia , Privación de Sueño/diagnóstico , Privación de Sueño/fisiopatología , Parálisis del Sueño/sangre , Parálisis del Sueño/diagnóstico , Parálisis del Sueño/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA