Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO J ; 40(10): e106214, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33932034

RESUMEN

BNIP3 is a mitophagy receptor with context-dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient's survival and depletion of BNIP3 in B16-F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2-mediated downregulation of HIF-1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3-deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4-mediated ferritinophagy, which fostered PHD2-mediated HIF-1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF-1α levels in BNIP3-depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF-1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro-tumorigenic HIF-1α glycolytic program in melanoma cells.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Melanoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Línea Celular Tumoral , Biología Computacional , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Immunoblotting , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
Photochem Photobiol Sci ; 14(8): 1410-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25666525

RESUMEN

Autophagy is a major catabolic pathway in a eukaryotic cell, employed for cellular self-degradation of obsolete or damaged cytoplasmic components serving as a major quality control and recycling mechanism that supports cell survival. Autophagy is fundamentally a cytoprotective and pro-survival process yet in general, it has become clear through a number of studies that autophagy has an exceedingly contextual role in cancer biology; conditional on which phase, location or type of oncogenic trigger and/or therapy is under consideration, the role of autophagy could end up fluctuating from pro- to anti-tumourigenic. Numerous studies have revealed that, contingent on the photosensitiser under consideration, autophagy triggered by PDT either adds to therapy resistance (by suppressing cell death) or vulnerability (by enabling autophagic cell death). Beyond cell death regulation, cancer cell-associated autophagy also supports resistance against PDT by reducing anticancer immune effector mechanisms. In this review, we have concisely described the state-of-the-art and the prevailing gap-in-knowledge vis-à-vis the role of PDT-triggered autophagy in cancer therapy resistance or susceptibility.


Asunto(s)
Autofagia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Fotoquimioterapia , Animales , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Humanos , Fármacos Fotosensibilizantes/farmacología
3.
Oncoimmunology ; 12(1): 2223094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332616

RESUMEN

Despite breakthroughs in immune checkpoint inhibitors (ICI), the majority of tumors, including those poorly infiltrated by CD8+ T cells or heavily infiltrated by immunosuppressive immune effector cells, are unlikely to result in clinically meaningful tumor responses. Radiation therapy (RT) has been combined with ICI to potentially overcome this resistance and improve response rates but reported clinical trial results have thus far been disappointing. Novel approaches are required to overcome this resistance and reprogram the immunosuppressive tumor microenvironment (TME) and address this major unmet clinical need. Using diverse preclinical tumor models of prostate and bladder cancer, including an autochthonous prostate tumor (Pten-/-/trp53-/-) that respond poorly to radiation therapy (RT) and anti-PD-L1 combinations, the key drivers of this resistance within the TME were profiled and used to develop rationalized combination therapies that simultaneously enhance activation of anti-cancer T cell responses and reprogram the immunosuppressive TME. The addition of anti-CD40mAb to RT resulted in an increase in IFN-y signaling, activation of Th-1 pathways with an increased infiltration of CD8+ T-cells and regulatory T-cells with associated activation of the CTLA-4 signaling pathway in the TME. Anti-CTLA-4mAb in combination with RT further reprogrammed the immunosuppressive TME, resulting in durable, long-term tumor control. Our data provide novel insights into the underlying mechanisms of the immunosuppressive TME that result in resistance to RT and anti-PD-1 inhibitors and inform therapeutic approaches to reprogramming the immune contexture in the TME to potentially improve tumor responses and clinical outcomes.


Asunto(s)
Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Masculino , Humanos , Linfocitos T Reguladores/metabolismo , Transducción de Señal , Terapia Combinada , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/radioterapia
4.
Front Immunol ; 14: 1160116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304285

RESUMEN

Introduction: The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results: HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion: Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.


Asunto(s)
Ligando de CD40 , Neoplasias , Animales , Ratones , Antígenos CD40 , Células Presentadoras de Antígenos , Macrófagos , Neoplasias/radioterapia , Modelos Animales de Enfermedad , Microambiente Tumoral
5.
Cancers (Basel) ; 13(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530329

RESUMEN

Radiotherapy (RT) is highly effective at directly killing tumor cells and plays an important part in cancer treatments being delivered to around 50% of all cancer patients. The additional immunomodulatory properties of RT have been investigated, and if exploited effectively, have the potential to further improve the efficacy of RT and cancer outcomes. The initial results of combining RT with immunomodulatory agents have generated promising data in pre-clinical studies, which has in turn led to a large number of RT and immunotherapy clinical trials. The overarching aim of these combinations is to enhance anti-tumor immune responses and improve responses rates and patient outcomes. In order to maximize this undoubted opportunity, there remain a number of important questions that need to be addressed, including: (i) the optimal RT dose and fractionation schedule; (ii) the optimal RT target volume; (iii) the optimal immuno-oncology (IO) agent(s) to partner with RT; (iv) the optimal site(s)/route(s) of administration of IO agents; and finally, the optimal RT schedule. In this review, we will summarize progress to date and identify current gaps in knowledge that need to be addressed in order to facilitate effective clinical translation of RT and IO agent combinations.

6.
Oncotarget ; 9(25): 17631-17644, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29707136

RESUMEN

The hypoxia responsive protein BNIP3, plays an important role in promoting cell death and/or autophagy, ultimately resulting in a cancer type-dependent, tumour-enhancer or tumour-suppressor activity. We previously reported that in melanoma cells, BNIP3 regulates cellular morphology, mitochondrial clearance, cellular viability and maintains protein expression of CD47, a pro-cancerous, immunosuppressive 'don't eat me' signal. Surface exposed CD47 is often up-regulated by cancer cells to avoid clearance by phagocytes and to suppress immunogenic cell death (ICD) elicited by anticancer therapies. However, whether melanoma-associated BNIP3 modulates CD47-associated immunological effects or ICD has not been explored properly. To this end, we evaluated the impact of the genetic ablation of BNIP3 (i.e. BNIP3KD) in melanoma cells, on macrophage-based phagocytosis, polarization and chemotaxis. Additionally, we tested its effects on crucial determinants of chemotherapy-induced ICD (i.e. danger signals), as well as in vivo anticancer vaccination effect. Interestingly, loss of BNIP3 reduced the expression of CD47 both in normoxic and hypoxic conditions while macrophage phagocytosis and chemotaxis were accentuated only when BNIP3KD melanoma cells were exposed to hypoxia. Moreover, when exposed to the ICD inducer mitoxantrone, the loss of melanoma cell-associated BNIP3 did not alter apoptosis induction, but significantly prevented ATP secretion and reduced phagocytic clearance of dying cells. In line with this, prophylactic vaccination experiments showed that the loss of BNIP3 tends to increase the intrinsic resistance of B16-F10 melanoma cells to ICD-associated anticancer vaccination effect in vivo. Thus, normoxic vs. hypoxic and live vs. dying cell contexts influence the ultimate immunomodulatory roles of melanoma cell-associated BNIP3.

7.
Oncotarget ; 9(97): 37076, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30651937

RESUMEN

[This corrects the article DOI: 10.18632/oncotarget.24815.].

8.
Int J Dev Biol ; 59(1-3): 131-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26374534

RESUMEN

Currently, it is widely acknowledged that a proactive anticancer immunosurveillance mechanism takes part in the rejection of neoplastic lesions before they progress towards a benign or malignant tumour. However in cases of very aggressive neoplastic lesions consisting of cells with high mutational diversity, cancer cell variants might be formed that are capable of evading host defence systems against uncontrolled proliferation and anticancer immunosurveillance. This is mainly accomplished through the exhibition of low immunogenicity, which is a particularly important stumbling block in the revival of long-lasting as well as stable anticancer immunity. Recently, it has emerged emphatically that inciting a cancer cell death routine, associated with the activation of danger signalling pathways evoking emission of damage-associated molecular patterns (DAMPs), markedly increases the immunogenicity of dying cancer cells. This cell death pathway has been termed "immunogenic cell death" (ICD). In the present review we introduce this concept and discuss its characteristics in detail. We also discuss in detail the various molecular, immunological and operational determinants of ICD.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Apoptosis/inmunología , Neoplasias/inmunología , Escape del Tumor/inmunología , Anticuerpos Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Vacunas contra el Cáncer/inmunología , Humanos , Vigilancia Inmunológica/inmunología , Neoplasias/patología , Neoplasias/terapia
9.
Front Immunol ; 6: 588, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26635802

RESUMEN

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA