Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell ; 34(10): 3873-3898, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35866980

RESUMEN

Copper (Cu) is a cofactor of around 300 Arabidopsis proteins, including photosynthetic and mitochondrial electron transfer chain enzymes critical for adenosine triphosphate (ATP) production and carbon fixation. Plant acclimation to Cu deficiency requires the transcription factor SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7). We report that in the wild type (WT) and in the spl7-1 mutant, respiratory electron flux via Cu-dependent cytochrome c oxidase is unaffected under both normal and low-Cu cultivation conditions. Supplementing Cu-deficient medium with exogenous sugar stimulated growth of the WT, but not of spl7 mutants. Instead, these mutants accumulated carbohydrates, including the signaling sugar trehalose 6-phosphate, as well as ATP and NADH, even under normal Cu supply and without sugar supplementation. Delayed spl7-1 development was in agreement with its attenuated sugar responsiveness. Functional TARGET OF RAPAMYCIN and SNF1-RELATED KINASE1 signaling in spl7-1 argued against fundamental defects in these energy-signaling hubs. Sequencing of chromatin immunoprecipitates combined with transcriptome profiling identified direct targets of SPL7-mediated positive regulation, including Fe SUPEROXIDE DISMUTASE1 (FSD1), COPPER-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR1 (CITF1), and the uncharacterized bHLH23 (CITF2), as well as an enriched upstream GTACTRC motif. In summary, transducing energy availability into growth and reproductive development requires the function of SPL7. Our results could help increase crop yields, especially on Cu-deficient soils.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cobre/química , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica de las Plantas , Crecimiento y Desarrollo , NAD/metabolismo , Fosfatos/metabolismo , Sirolimus , Suelo , Superóxidos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trehalosa/metabolismo
2.
PLoS Biol ; 19(2): e3001043, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529186

RESUMEN

MicroRNAs (miRNAs) play important roles in regulating flowering and reproduction of angiosperms. Mature miRNAs are encoded by multiple MIRNA genes that can differ in their spatiotemporal activities and their contributions to gene regulatory networks, but the functions of individual MIRNA genes are poorly defined. We functionally analyzed the activity of all 5 Arabidopsis thaliana MIR172 genes, which encode miR172 and promote the floral transition by inhibiting the accumulation of APETALA2 (AP2) and APETALA2-LIKE (AP2-LIKE) transcription factors (TFs). Through genome editing and detailed confocal microscopy, we show that the activity of miR172 at the shoot apex is encoded by 3 MIR172 genes, is critical for floral transition of the shoot meristem under noninductive photoperiods, and reduces accumulation of AP2 and TARGET OF EAT2 (TOE2), an AP2-LIKE TF, at the shoot meristem. Utilizing the genetic resources generated here, we show that the promotion of flowering by miR172 is enhanced by the MADS-domain TF FRUITFULL, which may facilitate long-term silencing of AP2-LIKE transcription, and that their activities are partially coordinated by the TF SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 15. Thus, we present a genetic framework for the depletion of AP2 and AP2-LIKE TFs at the shoot apex during floral transition and demonstrate that this plays a central role in floral induction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Meristema/genética , Fotoperiodo , Factores de Transcripción
3.
Proc Natl Acad Sci U S A ; 111(26): E2760-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979809

RESUMEN

In Arabidopsis thaliana environmental and endogenous cues promote flowering by activating expression of a small number of integrator genes. The MADS box transcription factor SHORT VEGETATIVE PHASE (SVP) is a critical inhibitor of flowering that directly represses transcription of these genes. However, we show by genetic analysis that the effect of SVP cannot be fully explained by repressing known floral integrator genes. To identify additional SVP functions, we analyzed genome-wide transcriptome data and show that GIBBERELLIN 20 OXIDASE 2, which encodes an enzyme required for biosynthesis of the growth regulator gibberellin (GA), is upregulated in svp mutants. GA is known to promote flowering, and we find that svp mutants contain elevated levels of GA that correlate with GA-related phenotypes such as early flowering and organ elongation. The ga20ox2 mutation suppresses the elevated GA levels and partially suppresses the growth and early flowering phenotypes of svp mutants. In wild-type plants, SVP expression in the shoot apical meristem falls when plants are exposed to photoperiods that induce flowering, and this correlates with increased expression of GA20ox2. Mutations that impair the photoperiodic flowering pathway prevent this downregulation of SVP and the strong increase in expression of GA20ox2. We conclude that SVP delays flowering by repressing GA biosynthesis as well as integrator gene expression and that, in response to inductive photoperiods, repression of SVP contributes to the rise in GA at the shoot apex, promoting rapid induction of flowering.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/biosíntesis , Oxigenasas de Función Mixta/genética , Brotes de la Planta/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Flores/genética , Hibridación in Situ , Brotes de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Plant Physiol ; 169(3): 2187-99, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26417007

RESUMEN

Flowers form on the flanks of the shoot apical meristem (SAM) in response to environmental and endogenous cues. In Arabidopsis (Arabidopsis thaliana), the photoperiodic pathway acts through FLOWERING LOCUS T (FT) to promote floral induction in response to day length. A complex between FT and the basic leucine-zipper transcription factor FD is proposed to form in the SAM, leading to activation of APETALA1 and LEAFY and thereby promoting floral meristem identity. We identified mutations that suppress FT function and recovered a new allele of the homeodomain transcription factor PENNYWISE (PNY). Genetic and molecular analyses showed that ectopic expression of BLADE-ON-PETIOLE1 (BOP1) and BOP2, which encode transcriptional coactivators, in the SAM during vegetative development, confers the late flowering of pny mutants. In wild-type plants, BOP1 and BOP2 are expressed in lateral organs close to boundaries of the SAM, whereas in pny mutants, their expression occurs in the SAM. This ectopic expression lowers FD mRNA levels, reducing responsiveness to FT and impairing activation of APETALA1 and LEAFY. We show that PNY binds to the promoters of BOP1 and BOP2, repressing their transcription. These results demonstrate a direct role for PNY in defining the spatial expression patterns of boundary genes and the significance of this process for floral induction by FT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Proteínas de Homeodominio/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Mutación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , ARN Mensajero/genética , Proteínas Represoras/genética , Reproducción , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Development ; 139(12): 2198-209, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22573618

RESUMEN

The plant growth regulator gibberellin (GA) contributes to many developmental processes, including the transition to flowering. In Arabidopsis, GA promotes this transition most strongly under environmental conditions such as short days (SDs) when other regulatory pathways that promote flowering are not active. Under SDs, GAs activate transcription of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY) at the shoot meristem, two genes encoding transcription factors involved in flowering. Here, the tissues in which GAs act to promote flowering were tested under different environmental conditions. The enzyme GIBBERELLIN 2 OXIDASE 7 (GA2ox7), which catabolizes active GAs, was overexpressed in most tissues from the viral CaMV 35S promoter, specifically in the vascular tissue from the SUCROSE TRANSPORTER 2 (SUC2) promoter or in the shoot apical meristem from the KNAT1 promoter. We find that under inductive long days (LDs), GAs are required in the vascular tissue to increase the levels of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) mRNAs, which encode a systemic signal transported from the leaves to the meristem during floral induction. Similarly, impairing GA signalling in the vascular tissue reduces FT and TSF mRNA levels and delays flowering. In the meristem under inductive LDs, GAs are not required to activate SOC1, as reported under SDs, but for subsequent steps in floral induction, including transcription of genes encoding SQUAMOSA PROMOTER BINDING PROMOTER LIKE (SPL) transcription factors. Thus, GA has important roles in promoting transcription of FT, TSF and SPL genes during floral induction in response to LDs, and these functions are spatially separated between the leaves and shoot meristem.


Asunto(s)
Arabidopsis/fisiología , Flores/fisiología , Giberelinas/metabolismo , Fotoperiodo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Flores/citología , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Meristema/genética , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/genética , Fenotipo , Floema/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Transcripción Genética
6.
Plant J ; 73(1): 37-49, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22946675

RESUMEN

The Arabidopsis fruit forms a seedpod that develops from the fertilized gynoecium. It is mainly comprised of an ovary in which three distinct tissues can be differentiated: the valves, the valve margins and the replum. Separation of cells at the valve margin allows for the valves to detach from the replum and thus dispersal of the seeds. Valves and valve margins are located in lateral positions whereas the replum is positioned medially and retains meristematic properties resembling the shoot apical meristem (SAM). Members of the WUSCHEL-related homeobox family have been involved in stem cell maintenance in the SAM, and within this family, we found that WOX13 is expressed mainly in meristematic tissues including the replum. We also show that wox13 loss-of-function mutations reduce replum size and enhance the phenotypes of mutants affected in the replum identity gene RPL. Conversely, misexpression of WOX13 produces, independently from BP and RPL, an oversized replum and valve defects that closely resemble those of mutants in JAG/FIL activity genes. Our results suggest that WOX13 promotes replum development by likely preventing the activity of the JAG/FIL genes in medial tissues. This regulation seems to play a role in establishing the gradient of JAG/FIL activity along the medio-lateral axis of the fruit critical for proper patterning. Our data have allowed us to incorporate the role of WOX13 into the regulatory network that orchestrates fruit patterning.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genes Homeobox/fisiología , Genes de Plantas/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Frutas/genética , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes Homeobox/genética , Genes de Plantas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Meristema/genética , Meristema/fisiología
7.
Cell Rep ; 31(9): 107717, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492426

RESUMEN

Flowering of many plant species depends on interactions between basic leucine zipper (bZIP) transcription factors and systemically transported florigen proteins. Members of the genus Arabidopsis contain two of these bZIPs, FD and FDP, which we show have largely complementary expression patterns in shoot apices before and during flowering. CRISPR-Cas9-induced null mutants for FDP flower slightly earlier than wild-type, whereas fd mutants are late flowering. Identical G-box sequences are enriched at FD and FDP binding sites, but only FD binds to genes involved in flowering and only fd alters their transcription. However, both proteins bind to genes involved in responses to the phytohormone abscisic acid (ABA), which controls developmental and stress responses. Many of these genes are differentially expressed in both fd and fdp mutant seedlings, which also show reduced ABA sensitivity. Thus, florigen-interacting bZIPs have distinct functions in flowering dependent on their expression patterns and, at earlier stages in development, play common roles in phytohormone signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Florigena/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/clasificación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Sistemas CRISPR-Cas/genética , Flores/genética , Flores/metabolismo , Edición Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genotipo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Mutagénesis , Filogenia , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Genome Biol ; 16: 31, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25853185

RESUMEN

BACKGROUND: The initiation of flowering is an important developmental transition as it marks the beginning of the reproductive phase in plants. The MADS-box transcription factors (TFs) FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP) form a complex to repress the expression of genes that initiate flowering in Arabidopsis. Both TFs play a central role in the regulatory network by conferring seasonal patterns of flowering. However, their interdependence and biological relevance when acting as a complex have not been extensively studied. RESULTS: We characterized the effects of both TFs individually and as a complex on flowering initiation using transcriptome profiling and DNA-binding occupancy. We find four major clusters regulating transcriptional responses, and that DNA binding scenarios are highly affected by the presence of the cognate partner. Remarkably, we identify genes whose regulation depends exclusively on simultaneous action of both proteins, thus distinguishing between the specificity of the SVP:FLC complex and that of each TF acting individually. The downstream targets of the SVP:FLC complex include a higher proportion of genes regulating floral induction, whereas those bound by either TF independently are biased towards floral development. Many genes involved in gibberellin-related processes are bound by the SVP:FLC complex, suggesting that direct regulation of gibberellin metabolism by FLC and SVP contributes to their effects on flowering. CONCLUSIONS: The regulatory codes controlled by SVP and FLC were deciphered at the genome-wide level revealing substantial flexibility based on dependent and independent DNA binding that may contribute to variation and robustness in the regulation of flowering.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Proteínas de Dominio MADS/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , Evolución Biológica , Inmunoprecipitación de Cromatina , Flores/efectos de los fármacos , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Genes de Plantas , Genotipo , Giberelinas/farmacología , Proteínas de Dominio MADS/genética , Meristema/efectos de los fármacos , Meristema/genética , Datos de Secuencia Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Análisis de Componente Principal , Unión Proteica/efectos de los fármacos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos
10.
Curr Opin Plant Biol ; 21: 120-127, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25072635

RESUMEN

Seasonal cues of day length or winter cold trigger flowering of many species. Forward and reverse genetic approaches are revealing the mechanisms by which these responses are conferred. Homologues of the Arabidopsis thaliana protein FLOWERING LOCUS T (FT) are widely used to mediate seasonal responses to day length and act as graft-transmissible promoters or repressors of flowering. Winter cold in A. thaliana promotes flowering by repressing transcription of the MADS box gene FLOWERING LOCUS C (FLC). The mechanism by which this occurs involves a complex interplay of different forms of long noncoding RNAs induced at the FLC locus during cold and changes in the chromatin of FLC. In perennial relatives of A. thaliana, flowering also requires the age-dependent downregulation of miRNA156 before winter.


Asunto(s)
Flores/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Frío , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , ARN no Traducido/fisiología , Estaciones del Año , Activación Transcripcional/fisiología
11.
Plant J ; 43(4): 586-96, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16098111

RESUMEN

During Arabidopsis flower development a set of homeotic genes plays a central role in specifying the distinct floral organs of the four whorls, sepals in the outermost whorl, and petals, stamens, and carpels in the sequentially inner whorls. The current model for the identity of the floral organs includes the SEPALLATA genes that act in combination with the A, B and C genes for the specification of sepals, petals, stamens and carpels. According to this new model, the floral organ identity proteins would form different complexes of proteins for the activation of the downstream genes. We show that the presence of SEPALLATA proteins is needed to activate the AG downstream gene SHATTERPROOF2, and that SEPALLATA4 alone does not provide with enough SEPALLATA activity for the complex to be functional. Our results suggest that CAULIFLOWER may be part of the protein complex responsible for petal development and that it is fully required in the absence of APETALA1 in 35S::SEP3 plants. In addition, genetic and molecular experiments using plants constitutively expressing SEPALLATA3 revealed a new role of SEPALLATA3 in activating other B and C function genes. We molecularly prove that the ectopic expression of SEPALLATA3 is sufficient to ectopically activate APETALA3 and AGAMOUS. Remarkably, plants that constitutively express both SEPALLATA3 and LEAFY developed ectopic petals, carpels and ovules outside of the floral context.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Proteínas de Arabidopsis/biosíntesis , Flores/metabolismo , Proteínas de Homeodominio/biosíntesis , Mutación , Factores de Transcripción/biosíntesis , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA