Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurol ; 30(8): 2506-2517, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166430

RESUMEN

BACKGROUND AND PURPOSE: CAV3 gene mutations, mostly inherited as an autosomal dominant trait, cause various skeletal muscle diseases. Clinical presentations encompass proximal myopathy, distal myopathy, or isolated persistent high creatine kinase (CK) with a major overlapping phenotype. METHODS: Twenty-three patients with CAV3 symptomatic mutations, from 16 different families, were included in a retrospective cohort. Mean follow-up duration was 24.2 ± 15.0 years. Clinical and functional data were collected during the follow-up. The results of muscle imaging, electroneuromyography, muscle histopathology, immunohistochemistry, and caveolin-3 Western blot analysis were also compiled. RESULTS: Exercise intolerance was the most common phenotype (52%). Eighty percent of patients had calf hypertrophy, and only 65% of patients presented rippling. One patient presented initially with camptocormia. A walking aid was required in only two patients. Electroneuromyography was mostly normal. CK level was elevated in all patients. No patient had cardiac or respiratory impairment. Muscle imaging showed fatty involvement of semimembranosus, semitendinosus, rectus femoris, biceps brachialis, and spinal muscles. Almost all (87%) of the biopsies were abnormal but without any specific pattern. Whereas a quarter of patients had normal caveolin-3 immunohistochemistry results, Western blots disclosed a reduced amount of the protein. We report nine mutations, including four not previously described. No phenotype-genotype correlation was evidenced. CONCLUSIONS: Caveolinopathy has diverse clinical, muscle imaging, and histological presentations but often has limited functional impact. Mild forms of the disease, an atypical phenotype, and normal caveolin-3 immunostaining are pitfalls leading to misdiagnosis.


Asunto(s)
Caveolina 3 , Enfermedades Musculares , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Estudios Retrospectivos , Estudios de Seguimiento , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Músculo Esquelético/patología , Mutación/genética
2.
J Med Genet ; 58(9): 602-608, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32994279

RESUMEN

BACKGROUND: Congenital nemaline myopathies are rare pathologies characterised by muscle weakness and rod-shaped inclusions in the muscle fibres. METHODS: Using next-generation sequencing, we identified three patients with pathogenic variants in the Troponin T type 1 (TNNT1) gene, coding for the troponin T (TNT) skeletal muscle isoform. RESULTS: The clinical phenotype was similar in all patients, associating hypotonia, orthopaedic deformities and progressive chronic respiratory failure, leading to early death. The anatomopathological phenotype was characterised by a disproportion in the muscle fibre size, endomysial fibrosis and nemaline rods. Molecular analyses of TNNT1 revealed a homozygous deletion of exons 8 and 9 in patient 1; a heterozygous nonsense mutation in exon 9 and retention of part of intron 4 in muscle transcripts in patient 2; and a homozygous, very early nonsense mutation in patient 3.Western blot analyses confirmed the absence of the TNT protein resulting from these mutations. DISCUSSION: The clinical and anatomopathological presentations of our patients reinforce the homogeneous character of the phenotype associated with recessive TNNT1 mutations. Previous studies revealed an impact of recessive variants on the tropomyosin-binding affinity of TNT. We report in our patients a complete loss of TNT protein due to open reading frame disruption or to post-translational degradation of TNT.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Miopatías Nemalínicas/diagnóstico , Miopatías Nemalínicas/genética , Fenotipo , Troponina T/genética , Biopsia , Preescolar , Biología Computacional/métodos , Femenino , Estudios de Asociación Genética/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Humanos , Inmunohistoquímica , Lactante , Análisis de Secuencia de ADN , Eliminación de Secuencia , Troponina T/metabolismo
3.
J Med Genet ; 56(9): 617-621, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30327447

RESUMEN

BACKGROUND: The activating signal cointegrator 1 (ASC-1) complex acts as a transcriptional coactivator for a variety of transcription factors and consists of four subunits: ASCC1, ASCC2, ASCC3 and TRIP4. A single homozygous mutation in ASCC1 has recently been reported in two families with a severe muscle and bone disorder. OBJECTIVE: We aim to contribute to a better understanding of the ASCC1-related disorder. METHODS: Here, we provide a clinical, histological and genetic description of three additional ASCC1 families. RESULTS: All patients presented with severe prenatal-onset muscle weakness, neonatal hypotonia and arthrogryposis, and congenital bone fractures. The muscle biopsies from the affected infants revealed intense oxidative rims beneath the sarcolemma and scattered remnants of sarcomeres with enlarged Z-bands, potentially representing a histopathological hallmark of the disorder. Sequencing identified recessive nonsense or frameshift mutations in ASCC1, including two novel mutations. CONCLUSION: Overall, this work expands the ASCC1 mutation spectrum, sheds light on the muscle histology of the disorder and emphasises the physiological importance of the ASC-1 complex in fetal muscle and bone development.


Asunto(s)
Artrogriposis/diagnóstico , Artrogriposis/genética , Proteínas Portadoras/genética , Fracturas Óseas/congénito , Fracturas Óseas/diagnóstico , Debilidad Muscular/genética , Mutación , Alelos , Sustitución de Aminoácidos , Biopsia , Análisis Mutacional de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Linaje , Fenotipo , Índice de Severidad de la Enfermedad , Secuenciación del Exoma
4.
Am J Hum Genet ; 99(5): 1086-1105, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27745833

RESUMEN

This study establishes PYROXD1 variants as a cause of early-onset myopathy and uses biospecimens and cell lines, yeast, and zebrafish models to elucidate the fundamental role of PYROXD1 in skeletal muscle. Exome sequencing identified recessive variants in PYROXD1 in nine probands from five families. Affected individuals presented in infancy or childhood with slowly progressive proximal and distal weakness, facial weakness, nasal speech, swallowing difficulties, and normal to moderately elevated creatine kinase. Distinctive histopathology showed abundant internalized nuclei, myofibrillar disorganization, desmin-positive inclusions, and thickened Z-bands. PYROXD1 is a nuclear-cytoplasmic pyridine nucleotide-disulphide reductase (PNDR). PNDRs are flavoproteins (FAD-binding) and catalyze pyridine-nucleotide-dependent (NAD/NADH) reduction of thiol residues in other proteins. Complementation experiments in yeast lacking glutathione reductase glr1 show that human PYROXD1 has reductase activity that is strongly impaired by the disease-associated missense mutations. Immunolocalization studies in human muscle and zebrafish myofibers demonstrate that PYROXD1 localizes to the nucleus and to striated sarcomeric compartments. Zebrafish with ryroxD1 knock-down recapitulate features of PYROXD1 myopathy with sarcomeric disorganization, myofibrillar aggregates, and marked swimming defect. We characterize variants in the oxidoreductase PYROXD1 as a cause of early-onset myopathy with distinctive histopathology and introduce altered redox regulation as a primary cause of congenital muscle disease.


Asunto(s)
Núcleo Celular/genética , Miopatías Distales/genética , Variación Genética , Miopatías Estructurales Congénitas/genética , Oxidorreductasas/genética , Secuencia de Aminoácidos , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Estudios de Cohortes , Creatina Quinasa/genética , Creatina Quinasa/metabolismo , Citoplasma/metabolismo , Miopatías Distales/patología , Proteína 4 Similar a ELAV/genética , Proteína 4 Similar a ELAV/metabolismo , Femenino , Flavoproteínas/metabolismo , Eliminación de Gen , Estudio de Asociación del Genoma Completo , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Células HEK293 , Humanos , Masculino , Músculo Esquelético/patología , Mutación Missense , Miopatías Estructurales Congénitas/patología , Oxidorreductasas/metabolismo , Linaje , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Pez Cebra/genética
5.
Eur Respir J ; 53(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30523161

RESUMEN

Amyotrophic lateral sclerosis (ALS) patients show progressive respiratory muscle weakness leading to death from respiratory failure. However, there are no data on diaphragm histological changes in ALS patients and how they correlate with routine respiratory measurements.We collected 39 diaphragm biopsies concomitantly with laparoscopic insertion of intradiaphragmatic electrodes during a randomised controlled trial evaluating early diaphragm pacing in ALS (https://clinicaltrials.gov; NCT01583088). Myofibre type, size and distribution were evaluated by immunofluorescence microscopy and correlated with spirometry, respiratory muscle strength and phrenic nerve conduction parameters. The relationship between these variables and diaphragm atrophy was assessed using multivariate regression models.All patients exhibited significant slow- and fast-twitch diaphragmatic atrophy. Vital capacity (VC), maximal inspiratory pressure, sniff nasal inspiratory pressure (SNIP) and twitch transdiaphragmatic pressure did not correlate with the severity of diaphragm atrophy. Inspiratory capacity (IC) correlated modestly with slow-twitch myofibre atrophy. Supine fall in VC correlated weakly with fast-twitch myofibre atrophy. Multivariate analysis showed that IC, SNIP and functional residual capacity were independent predictors of slow-twitch diaphragmatic atrophy, but not fast-twitch atrophy.Routine respiratory tests are poor predictors of diaphragm structural changes. Improved detection of diaphragm atrophy is essential for clinical practice and for management of trials specifically targeting diaphragm muscle function.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Atrofia/diagnóstico , Atrofia/fisiopatología , Diafragma/fisiopatología , Respiración , Tejido Adiposo/patología , Biopsia , Electrodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/fisiopatología , Análisis de Regresión , Pruebas de Función Respiratoria , Insuficiencia Respiratoria/fisiopatología , Músculos Respiratorios/fisiopatología , Ultrasonografía , Capacidad Vital
6.
Am J Hum Genet ; 90(2): 201-16, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22265013

RESUMEN

We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.


Asunto(s)
Anomalías Múltiples/genética , Síndrome de Ehlers-Danlos/genética , Mutación del Sistema de Lectura , Pérdida Auditiva/genética , Isomerasa de Peptidilprolil/genética , Adolescente , Aminoácidos/orina , Niño , Preescolar , Síndrome de Ehlers-Danlos/orina , Retículo Endoplásmico/genética , Matriz Extracelular/genética , Femenino , Fibroblastos/metabolismo , Variación Genética , Pérdida Auditiva/orina , Heterocigoto , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Pliegue de Proteína , cis-trans-Isomerasas/genética
7.
J Inherit Metab Dis ; 38(4): 621-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25778939

RESUMEN

Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular content into the systemic circulation. Acquired causes by direct injury to the sarcolemma are most frequent. The inherited causes are: i) metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomal α-methyl-acyl-CoA-racemase defect (AMACR), ii) structural causes with muscle dystrophies and myopathies, iii) calcium pump disorder with RYR1 gene mutations, iv) inflammatory causes with myositis. Irrespective of the cause of rhabdomyolysis, the pathology follows a common pathway, either by the direct injury to sarcolemma by increased intracellular calcium concentration (acquired causes) or by the failure of energy production (inherited causes), which leads to fiber necrosis. Rhabdomyolysis are frequently precipitated by febrile illness or exercise. These conditions are associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. To illustrate these points in the context of energy metabolism, protein thermolability and the potential benefits of arginine therapy, we focus on a rare cause of rhabdomyolysis, aldolase A deficiency. In addition, our studies on lipin-1 (LPIN1) deficiency raise the possibility that several diseases involved in rhabdomyolysis implicate pro-inflammatory cytokines and may even represent primarily pro-inflammatory diseases. Thus, not only thermolability of mutant proteins critical for muscle function, but also pro-inflammatory cytokines per se, may lead to metabolic decompensation and rhabdomyolysis.


Asunto(s)
Inflamación/genética , Inflamación/patología , Rabdomiólisis/genética , Rabdomiólisis/patología , Enfermedad Aguda , Citocinas/metabolismo , Humanos , Fosfatidato Fosfatasa/genética
8.
J Med Genet ; 51(12): 824-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25326555

RESUMEN

BACKGROUND: Tubular aggregate myopathies (TAMs) are muscle disorders characterised by abnormal accumulations of densely packed single-walled or double-walled membrane tubules in muscle fibres. Recently, STIM1, encoding a major calcium sensor of the endoplasmic reticulum, was identified as a TAM gene. METHODS: The present study aims to define the clinical, histological and ultrastructural phenotype of tubular aggregate myopathy and to assess the STIM1 mutation spectrum. RESULTS: We describe six new TAM families harbouring one known and four novel STIM1 mutations. All identified mutations are heterozygous missense mutations affecting highly conserved amino acids in the calcium-binding EF-hand domains, demonstrating the presence of a mutation hot spot for TAM. We show that the mutations induce constitutive STIM1 clustering, strongly suggesting that calcium sensing and consequently calcium homoeostasis is impaired. Histological and ultrastructural analyses define a common picture with tubular aggregates labelled with Gomori trichrome and Nicotinamide adenine dinucleotide (NADH) tetrazolium reductase, substantiating their endoplasmic reticulum origin. The aggregates were observed in both fibre types and were often accompanied by nuclear internalisation and fibre size variability. The phenotypical spectrum ranged from childhood onset progressive muscle weakness and elevated creatine kinase levels to adult-onset myalgia without muscle weakness and normal CK levels. CONCLUSIONS: The present study expands the phenotypical spectrum of STIM1-related tubular aggregate myopathy. STIM1 should therefore be considered for patients with tubular aggregate myopathies involving either muscle weakness or myalgia as the first and predominant clinical sign.


Asunto(s)
Proteínas de la Membrana/genética , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/genética , Fenotipo , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Biopsia , Calcio/metabolismo , Línea Celular , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Proteínas de la Membrana/química , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Miopatías Estructurales Congénitas/metabolismo , Proteínas de Neoplasias/química , Linaje , Conformación Proteica , Alineación de Secuencia , Molécula de Interacción Estromal 1
10.
Brain ; 136(Pt 8): 2359-68, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824486

RESUMEN

Amyotrophic lateral sclerosis is a typically rapidly progressive neurodegenerative disorder affecting motor neurons leading to progressive muscle paralysis and death, usually from respiratory failure, in 3-5 years. Some patients have slow disease progression and prolonged survival, but the underlying mechanisms remain poorly understood. Riluzole, the only approved treatment, only modestly prolongs survival and has no effect on muscle function. In the early phase of the disease, motor neuron loss is initially compensated for by collateral reinnervation, but over time this compensation fails, leading to progressive muscle wasting. The crucial role of muscle histone deacetylase 4 and its regulator microRNA-206 in compensatory reinnervation and disease progression was recently suggested in a mouse model of amyotrophic lateral sclerosis (transgenic mice carrying human mutations in the superoxide dismutase gene). Here, we sought to investigate whether the microRNA-206-histone deacetylase 4 pathway plays a role in muscle compensatory reinnervation in patients with amyotrophic lateral sclerosis and thus contributes to disease outcome differences. We studied muscle reinnervation using high-resolution confocal imaging of neuromuscular junctions in muscle samples obtained from 11 patients with amyotrophic lateral sclerosis, including five long-term survivors. We showed that the proportion of reinnervated neuromuscular junctions was significantly higher in long-term survivors than in patients with rapidly progressive disease. We analysed the expression of muscle candidate genes involved in the reinnervation process and showed that histone deacetylase 4 upregulation was significantly greater in patients with rapidly progressive disease and was negatively correlated with the extent of muscle reinnervation and functional outcome. Conversely, the proposed regulator of histone deacetylase 4, microRNA-206, was upregulated in both patient groups, but did not correlate with disease progression or reinnervation. We conclude that muscle expression of histone deacetylase 4 may be a key factor for muscle reinnervation and disease progression in patients with amyotrophic lateral sclerosis. Specific histone deacetylase 4 inhibitors may then constitute a therapeutic approach to enhancing motor performance and slowing disease progression in amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Histona Desacetilasas/genética , MicroARNs/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Proteínas Represoras/genética , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Progresión de la Enfermedad , Femenino , Histona Desacetilasas/metabolismo , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Unión Neuromuscular/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Proteínas Represoras/metabolismo , Sobrevivientes , Regulación hacia Arriba
11.
J Neuromuscul Dis ; 11(4): 855-870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701156

RESUMEN

Medical acts, such as imaging, lead to the production of various medical text reports that describe the relevant findings. This induces multimodality in patient data by combining image data with free-text and consequently, multimodal data have become central to drive research and improve diagnoses. However, the exploitation of patient data is problematic as the ecosystem of analysis tools is fragmented according to the type of data (images, text, genetics), the task (processing, exploration) and domain of interest (clinical phenotype, histology). To address the challenges, we developed IMPatienT (Integrated digital Multimodal PATIENt daTa), a simple, flexible and open-source web application to digitize, process and explore multimodal patient data. IMPatienT has a modular architecture allowing to: (i) create a standard vocabulary for a domain, (ii) digitize and process free-text data, (iii) annotate images and perform image segmentation, (iv) generate a visualization dashboard and provide diagnosis decision support. To demonstrate the advantages of IMPatienT, we present a use case on a corpus of 40 simulated muscle biopsy reports of congenital myopathy patients. As IMPatienT provides users with the ability to design their own vocabulary, it can be adapted to any research domain and can be used as a patient registry for exploratory data analysis. A demo instance of the application is available at https://impatient.lbgi.fr/.


Asunto(s)
Internet , Humanos , Programas Informáticos
12.
Genome Med ; 16(1): 87, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982518

RESUMEN

BACKGROUND: Congenital myopathies are severe genetic diseases with a strong impact on patient autonomy and often on survival. A large number of patients do not have a genetic diagnosis, precluding genetic counseling and appropriate clinical management. Our objective was to find novel pathogenic variants and genes associated with congenital myopathies and to decrease diagnostic odysseys and dead-end. METHODS: To identify pathogenic variants and genes implicated in congenital myopathies, we established and conducted the MYOCAPTURE project from 2009 to 2018 to perform exome sequencing in a large cohort of 310 families partially excluded for the main known genes. RESULTS: Pathogenic variants were identified in 156 families (50%), among which 123 families (40%) had a conclusive diagnosis. Only 44 (36%) of the resolved cases were linked to a known myopathy gene with the corresponding phenotype, while 55 (44%) were linked to pathogenic variants in a known myopathy gene with atypical signs, highlighting that most genetic diagnosis could not be anticipated based on clinical-histological assessments in this cohort. An important phenotypic and genetic heterogeneity was observed for the different genes and for the different congenital myopathy subtypes, respectively. In addition, we identified 14 new myopathy genes not previously associated with muscle diseases (20% of all diagnosed cases) that we previously reported in the literature, revealing novel pathomechanisms and potential therapeutic targets. CONCLUSIONS: Overall, this approach illustrates the importance of massive parallel gene sequencing as a comprehensive tool for establishing a molecular diagnosis for families with congenital myopathies. It also emphasizes the contribution of clinical data, histological findings on muscle biopsies, and the availability of DNA samples from additional family members to the diagnostic success rate. This study facilitated and accelerated the genetic diagnosis of congenital myopathies, improved health care for several patients, and opened novel perspectives for either repurposing of existing molecules or the development of novel treatments.


Asunto(s)
Secuenciación del Exoma , Estudios de Asociación Genética , Fenotipo , Humanos , Masculino , Femenino , Predisposición Genética a la Enfermedad , Mutación , Exoma/genética , Linaje , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/diagnóstico , Enfermedades Musculares/genética , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/congénito , Niño , Adulto
13.
Med Sci (Paris) ; 38 Hors série n° 1: 17-28, 2022 Dec.
Artículo en Francés | MEDLINE | ID: mdl-36649630

RESUMEN

Neuromuscular diseases with neonatal or perinatal onset are usually very severe. Their diagnosis requires rigorous studies in order to determine the cause of the disease and thus help to establish the vital prognosis. Neonatal muscle biopsy studies are driven by the extreme severity of the clinical picture. The aim of this analysis is to search for or validate a precise diagnosis and etiology. Numerous genes are at the origin of these severe neonatal myopathies, for some of them anomalies of a specific gene could be identified.


Asunto(s)
Enfermedades Neuromusculares , Recién Nacido , Embarazo , Femenino , Humanos , Estudios Retrospectivos , Enfermedades Neuromusculares/diagnóstico , Biopsia , Músculos/patología
14.
EBioMedicine ; 86: 104367, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36410115

RESUMEN

BACKGROUND: Normative values for different morphometric parameters of muscle fibres during paediatric development, i.e. from 0 to 18 years, are currently unavailable. They would be of major importance to accurately evaluate pathological changes and could be used as reference biomarkers for evaluating treatment response in clinical trials, or physiological adjustments in sports or ageing. METHODS: Data were derived from 482 images with a total of 33 094 fibres from 10 µm cross-sections of snap-frozen muscle from 83 deltoid muscle biopsies from patients, 0-18 years, without neuromuscular pathology stained with ATPase 9.4. Data was acquired and analysed with patented image analysis algorithms from "CARPACCIO.cloud". Several parameters were extracted or calculated, including cross-sectional area (CSA), fibre type, circularity, as well as the Minimum diameter of Feret (MinFeret). FINDINGS: This study illustrates changes in quantitative parameters for muscle morphology over the course of paediatric development and the pivotal changes occurring around puberty. Only fibre size parameters (MinFeret, CSA) are dependent on gender, and only after puberty. All other parameters vary in a similar manner for females and males. The proportion of type 1 fibres is essentially constant from birth to age 10, decreasing to ≈40% by age 18. Circularity decreases with age, to plateau after age 10 for both fibre types. INTERPRETATION: Normative values and reference charts for muscle fibre types in this age range have been generated to allow comparison of data from patients in pathology laboratories working on neuromuscular diseases. FUNDING: BPI FRANCE, PULSALYS, Association de l'Institut de Myologie, French National Research Agency (ANR), LABEX CORTEX of Université de Lyon.


Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Masculino , Femenino , Humanos , Niño , Adolescente , Estudios Transversales , Biopsia , Envejecimiento , Músculo Esquelético
15.
J Neurol Sci ; 424: 117391, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33799212

RESUMEN

Muscle phosphorylase kinase b deficiency (PhK) is a rare disorder of glycogen metabolism characterized by exercise-induced myalgia and cramps, myoglobinuria and progressive muscle weakness. PhK deficiency is due to mutations in the PHKA1 gene inherited in an X-linked manner and is associated to glycogenosis type VIII (GSD VIII also called GSD IXd). PHKA1 gene codes for the αM subunit of the PhK, a multimeric protein complex responsible for the control of glycogen breakdown in muscle. Until now, few patients have been reported with X-linked recessive muscle PhK deficiency due to PHKA1 mutations. All reported patients presented with exercise intolerance and mild myopathy and one of them had cognitive impairment, leading to speculate about a central nervous system involvement in GSD VIII. Here we report in a sibling a novel mutation in the PHKA1 gene associated with a progressive myopathy, exercise intolerance, muscle hypertrophy and cognitive impairment as an associated feature. This report expands the genetic and clinical spectrum of the extremely rare PHKA1-related PhK deficiency and presents new evidences about its involvement in brain development.


Asunto(s)
Disfunción Cognitiva , Enfermedad del Almacenamiento de Glucógeno , Enfermedades Musculares , Fosforilasa Quinasa/genética , Disfunción Cognitiva/genética , Enfermedad del Almacenamiento de Glucógeno/complicaciones , Enfermedad del Almacenamiento de Glucógeno/genética , Humanos , Mutación/genética
16.
Mitochondrion ; 55: 64-77, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858252

RESUMEN

To address the frequency of complex V defects, we systematically sequenced MT-ATP6/8 genes in 512 consecutive patients. We performed functional analysis in muscle or fibroblasts for 12 out of 27 putative homoplasmic mutations and in cybrids for four. Fibroblasts, muscle and cybrids with known deleterious mutations underwent parallel analysis. It included oxidative phosphorylation spectrophotometric assays, western blots, structural analysis, ATP production, glycolysis and cell proliferation evaluation. We demonstrated the deleterious nature of three original mutations. Striking gradation in severity of the mutations consequences and differences between muscle, fibroblasts and cybrids implied a likely under-diagnosis of human complex V defects.


Asunto(s)
Enfermedades Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Polimorfismo de Nucleótido Simple , Adulto , Células Cultivadas , Femenino , Fibroblastos/química , Fibroblastos/citología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Híbridas/química , Células Híbridas/citología , Masculino , Músculo Esquelético/química , Músculo Esquelético/citología , Mutación , Fosforilación Oxidativa , Análisis de Secuencia de ADN
17.
Acta Neuropathol ; 117(3): 283-91, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19084976

RESUMEN

Mutations in the gene encoding the phosphoinositide phosphatase myotubularin 1 protein (MTM1) are usually associated with severe neonatal X-linked myotubular myopathy (XLMTM). However, mutations in MTM1 have also been recognized as the underlying cause of "atypical" forms of XLMTM in newborn boys, female infants, female manifesting carriers and adult men. We reviewed systematically the biopsies of a cohort of patients with an unclassified form of centronuclear myopathy (CNM) and identified four patients presenting a peculiar histological alteration in some muscle fibers that resembled a necklace ("necklace fibers"). We analyzed further the clinical and morphological features and performed a screening of the genes involved in CNM. Muscle biopsies in all four patients demonstrated 4-20% of fibers with internalized nuclei aligned in a basophilic ring (necklace) at 3 microm beneath the sarcolemma. Ultrastructurally, such necklaces consisted of myofibrils of smaller diameter, in oblique orientation, surrounded by mitochondria, sarcoplasmic reticulum and glycogen granules. In the four patients (three women and one man), myopathy developed in early childhood but was slowly progressive. All had mutations in the MTM1 gene. Two mutations have previously been reported (p.E404K and p.R241Q), while two are novel; a c.205_206delinsAACT frameshift change in exon 4 and a c.1234A>G mutation in exon 11 leading to an abnormal splicing and the deletion of nine amino acids in the catalytic domain of MTM1. Necklace fibers were seen neither in DNM2- or BIN1-related CNM nor in males with classical XLMTM. The presence of necklace fibers is useful as a marker to direct genetic analysis to MTM1 in CNM.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Adolescente , Adulto , Edad de Inicio , Biopsia , Femenino , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Mutación , Miofibrillas/ultraestructura , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Reacción en Cadena de la Polimerasa
18.
Neuromuscul Disord ; 38: 42-43, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564999
19.
Acta Neuropathol Commun ; 7(1): 3, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30611313

RESUMEN

Several morphological phenotypes have been associated to RYR1-recessive myopathies. We recharacterized the RYR1-recessive morphological spectrum by a large monocentric study performed on 54 muscle biopsies from a large cohort of 48 genetically confirmed patients, using histoenzymology, immunohistochemistry, and ultrastructural studies. We also analysed the level of RyR1 expression in patients' muscle biopsies. We defined "dusty cores" the irregular areas of myofibrillar disorganisation characterised by a reddish-purple granular material deposition with uneven oxidative stain and devoid of ATPase activity, which represent the characteristic lesion in muscle biopsy in 54% of patients. We named Dusty Core Disease (DuCD) the corresponding entity of congenital myopathy. Dusty cores had peculiar histological and ultrastructural characteristics compared to the other core diseases. DuCD muscle biopsies also showed nuclear centralization and type1 fibre predominance. Dusty cores were not observed in other core myopathies and centronuclear myopathies. The other morphological groups in our cohort of patients were: Central Core (CCD: 21%), Core-Rod (C&R:15%) and Type1 predominance "plus" (T1P+:10%). DuCD group was associated to an earlier disease onset, a more severe clinical phenotype and a lowest level of RyR1 expression in muscle, compared to the other groups. Variants located in the bridge solenoid and the pore domains were more frequent in DuCD patients. In conclusion, DuCD is the most frequent histopathological presentation of RYR1-recessive myopathies. Dusty cores represent the unifying morphological lesion among the DuCD pathology spectrum and are the morphological hallmark for the recessive form of disease.


Asunto(s)
Enfermedades Musculares/genética , Enfermedades Musculares/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Adolescente , Adulto , Anciano , Biopsia , Niño , Preescolar , Estudios de Cohortes , Femenino , Genes Recesivos , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculo Esquelético/ultraestructura , Enfermedades Musculares/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adulto Joven
20.
J Neurol ; 266(10): 2524-2534, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31267206

RESUMEN

Autosomal dominant limb girdle muscular dystrophy D3 HNRNPDL-related is a rare dominant myopathy caused by mutations in HNRNPDL. Only three unrelated families have been described worldwide, a Brazilian and a Chinese carrying the mutation c.1132G>A p.(Asp378Asn), and one Uruguayan with the mutation c.1132G>C p. (Asp378His), both mutations occurring in the same codon. The present study enlarges the clinical, morphological and muscle MRI spectrum of AD-HNRNPDL-related myopathies demonstrating the significant particularities of the disease. We describe two new unrelated Argentinean families, carrying the previously reported c.1132G>C p.(Asp378His) HNRNPDL mutation. There was a wide phenotypic spectrum including oligo-symptomatic cases, pure limb girdle muscle involvement or distal lower limb muscle weakness. Scapular winging was the most common finding, observed in all patients. Muscle MRIs of the thigh, at different stages of the disease, showed particular involvement of adductor magnus and vastus besides a constant preservation of the rectus femoris and the adductor longus muscles, defining a novel MRI pattern. Muscle biopsy findings were characterized by the presence of numerous rimmed vacuoles, cytoplasmic bodies, and abundant autophagic material at the histochemistry and ultrastructural levels. HNRNPDL-related LGMD D3 results in a wide range of clinical phenotypes from the classic proximal form of LGMD to a more distal phenotype. Thigh MRI suggests a specific pattern. Codon 378 of HNRNPDL gene can be considered a mutation hotspot for HNRNPDL-related myopathy. Pathologically, the disease can be classified among the autophagic rimmed vacuolar myopathies as with the other multisystem proteinopathies.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Distrofia Muscular de Cinturas , Anciano , Argentina , Femenino , Ribonucleoproteína Nuclear Heterogénea D0 , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/patología , Distrofia Muscular de Cinturas/fisiopatología , Mutación , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA