Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 30(9): 094001, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30524064

RESUMEN

Series resistance in solar cells limit their maximum conversion efficiency and thus should be minimized. Generally, such losses originate from deficiencies at the contact or absorber level. Quantifying them is the first step for tackling its reduction. In this work, we provide a new way to assess the series resistance in nanowire-based solar cells, which significantly underperforms predicted theoretical efficiency. We illuminate the devices at different levels of light intensity (from 1 to 1000 suns), which gives us insight in the carrier transport and series losses mechanism. We demonstrate the method on a device obtained by self-assembled GaAs nanowire p-n junction arrays on silicon. This analysis method provides a platform to distinguish the intrinsic response of the nanowire p-n junction from the series resistance effects. More generally, we provide a means of optimizing the efficiency in next generation solar cells, where contacts still have to be developed.

2.
Nano Lett ; 18(4): 2393-2401, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29578722

RESUMEN

Tuning light emission in bulk and quantum structures by strain constitutes a complementary method to engineer functional properties of semiconductors. Here, we demonstrate the tuning of light emission of GaAs nanowires and their quantum dots up to 115 meV by applying strain through an oxide envelope. We prove that the strain is highly anisotropic and clearly results in a component along the NW longitudinal axis, showing good agreement with the equations of uniaxial stress. We further demonstrate that the strain strongly depends on the oxide thickness, the oxide intrinsic strain, and the oxide microstructure. We also show that ensemble measurements are fully consistent with characterizations at the single-NW level, further elucidating the general character of the findings. This work provides the basic elements for strain-induced band gap engineering and opens new avenues in applications where a band-edge shift is necessary.

3.
Chemphyschem ; 12(1): 191-6, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21226201

RESUMEN

Herein, we study the photoactivity of anatase-rutile bilayer thin films consisting of an anatase overlayer of variable thickness from some tenths to some hundred nanometers deposited onto a rutile thin film. As references single anatase layers of equivalent thickness were deposited onto silicon. All the films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy. The photoactivity of the samples was assessed by following the evolution with the UV illumination time of both the wetting angle on the thin film surface and the decoloration of a dye in a water solution. While a similar efficiency is found for the first type of experiments irrespective of the anatase thickness, in the second type a maximum in the photoactivity is found for a thickness of the anatase layer of about 130 nm. This enhanced photoactivity in bilayer systems with a buried anatase-rutile heterojunction is related to the formation of different Schottky potential barriers in the anatase layer, depending on its thickness and the substrate (i.e. rutile or SiO(2)) where it is deposited.


Asunto(s)
Membranas Artificiales , Titanio/química , Tamaño de la Partícula , Fotoquímica , Propiedades de Superficie
4.
Light Sci Appl ; 5(12): e16216, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30167138

RESUMEN

Extracting the light trapped in a waveguide, or the opposite effect of trapping light in a thin region and guiding it perpendicular to its incident propagation direction, is essential for optimal energetic performance in illumination, display or light harvesting devices. Here we demonstrate that the paradoxical goal of letting as much light in or out while maintaining the wave effectively trapped can be achieved with a periodic array of interpenetrated fibers forming a photonic fiber plate. Photons entering perpendicular to that plate may be trapped in an intermittent chaotic trajectory, leading to an optically ergodic system. We fabricated such a photonic fiber plate and showed that for a solar cell incorporated on one of the plate surfaces, light absorption is greatly enhanced. Confirming this, we found the unexpected result that a more chaotic photon trajectory reduces the production of photon scattering entropy.

5.
ACS Appl Mater Interfaces ; 8(42): 28750-28756, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27696856

RESUMEN

Solution-processed ZnO sol-gel or nanoparticles are widely used as the electron-transporting layer (ETL) in optoelectronic devices. However, chemisorbed oxygen on the ZnO layer surface has been shown to be detrimental for the device performance as well as stability. Herein, we demonstrate that chemisorbed oxygen removal based on UV illumination of the ZnO surface layer under a nitrogen atmosphere can, simultaneously, improve the power conversion efficiency and photostability of PTB7-Th:PC71BM-based inverted polymer solar cells. By a systematic study of such a UV illumination procedure, we obtained optimal conditions where both the cell efficiency and stability were improved. We fabricated cells with a power conversion efficiency higher than 9.8% and with a T80 lifetime longer than 500 h, corresponding to about a 2.5-fold enhancement relative to non-UV-treated ZnO reference devices.

6.
ACS Appl Mater Interfaces ; 7(33): 18435-40, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26245844

RESUMEN

A 4-terminal architecture is proposed in which two thin active layers (<100 nm) of PTB7:PC71BM are deposited on a two-sided ITO covered glass substrate. By modeling the electric field distribution inside the multilayer structure and applying an inverse solving problem procedure, we designed an optimal device architecture tailored to extract the highest photocurrent possible. By adopting such a 4-terminal configuration, we numerically demonstrated that even when the two subcells use identical absorber materials, the performance of the 4-terminal device may overcome the performance of the best equivalent single-junction device. In an experimental implementation of such a 4-terminal device, we demonstrate the viability of the approach and find a very good match with the trend of the numerical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA