Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 186(18): 3903-3920.e21, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37557169

RESUMEN

Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Escape del Tumor , Humanos , Presentación de Antígeno , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA , Neoplasias/inmunología , Ubiquitina-Proteína Ligasas/genética
2.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458201

RESUMEN

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Asunto(s)
Ciclinas , Reparación de la Incompatibilidad de ADN , Animales , Ciclinas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interfase , Mamíferos/metabolismo
3.
Mol Cell ; 83(1): 1-3, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608666

RESUMEN

Cells must avoid licensing of neosynthesized DNA to prevent rereplication. In this issue of Molecular Cell, Ratnayeke et al. (2022)1 reveal how the licensing factor CDT1, prior to its degradation, inhibits DNA elongation by suppressing CMG helicase progression at replication forks.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , ADN , ADN Helicasas/genética
4.
Nature ; 592(7856): 789-793, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854235

RESUMEN

D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer1, but the mechanisms that regulate their turnover are still being debated2,3. Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4AMBRA1 (also known as CRL4DCAF3) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , División Celular , Ciclina D1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sistemas CRISPR-Cas , Ciclina D2/metabolismo , Ciclina D3/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Técnicas de Inactivación de Genes , Genes Supresores de Tumor , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias/genética , Ubiquitina/metabolismo
5.
Nature ; 592(7856): 799-803, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854232

RESUMEN

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclina D/metabolismo , Inestabilidad Genómica , Fase S , Animales , Línea Celular , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN , Regulación del Desarrollo de la Expresión Génica , Genes Supresores de Tumor , Humanos , Ratones , Ratones Noqueados , Mutaciones Letales Sintéticas
6.
Genes Dev ; 33(23-24): 1615-1616, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792015

RESUMEN

Diverse linkage in polyubiquitin chain structure gives cells an unparalleled complexity to virtually modulate all aspects of cell biology. Substrates can be covalently modified by ubiquitin chains of different topology. Proper DNA damage response takes advantage of this regulatory system and heavily relies on ubiquitin-based signaling. Moreover, increasing evidence suggests that chain specificity dictates DNA repair outcome. In this issue of Genes & Development, Wu and colleagues (pp. 1702-1717) show that Cezanne and Cezanne2, two paralogous deubiquitinating enzymes that are recruited to sites of DNA damage, ensure proper local polyubiquitin chain composition for downstream DNA repair protein assembly. Their study offers a key insight into the mechanism of crosstalk between linkage-specific ubiquitylation at DNA damage sites, while simultaneously raising important questions for future research.


Asunto(s)
Poliubiquitina , Ubiquitina , Daño del ADN , Reparación del ADN , Unión Proteica , Ubiquitinación
7.
Mol Cell ; 64(3): 507-519, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773672

RESUMEN

SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent γH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.


Asunto(s)
Ciclinas/genética , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Histonas/genética , Proteínas Nucleares/genética , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Secuencias de Aminoácidos , Animales , Apoptosis , Sitios de Unión , Línea Celular Tumoral , Ciclinas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Proteolisis , ARN Mensajero/metabolismo , Ratas , Transducción de Señal , Xenopus laevis , Pez Cebra , Factores de Escisión y Poliadenilación de ARNm/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33827988

RESUMEN

In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.


Asunto(s)
COVID-19/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Complejos Multiproteicos/metabolismo , Sistemas de Lectura Abierta , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , COVID-19/genética , Proteínas de Ciclo Celular/genética , Proteínas Cullin/genética , Células HEK293 , Humanos , Complejos Multiproteicos/genética , SARS-CoV-2/genética , Proteínas Virales/genética
9.
Nucleic Acids Res ; 44(3): e28, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26429970

RESUMEN

The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.


Asunto(s)
ADN/química , Uracilo/análisis , Catálisis , Línea Celular Tumoral , Humanos , Técnicas In Vitro
10.
Nucleic Acids Res ; 42(19): 11912-20, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25274731

RESUMEN

Transfer of phage-related pathogenicity islands of Staphylococcus aureus (SaPI-s) was recently reported to be activated by helper phage dUTPases. This is a novel function for dUTPases otherwise involved in preservation of genomic integrity by sanitizing the dNTP pool. Here we investigated the molecular mechanism of the dUTPase-induced gene expression control using direct techniques. The expression of SaPI transfer initiating proteins is repressed by proteins called Stl. We found that Φ11 helper phage dUTPase eliminates SaPIbov1 Stl binding to its cognate DNA by binding tightly to Stl protein. We also show that dUTPase enzymatic activity is strongly inhibited in the dUTPase:Stl complex and that the dUTPase:dUTP complex is inaccessible to the Stl repressor. Our results disprove the previously proposed G-protein-like mechanism of SaPI transfer activation. We propose that the transfer only occurs if dUTP is cleared from the nucleotide pool, a condition promoting genomic stability of the virulence elements.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pirofosfatasas/metabolismo , Proteínas Represoras/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/antagonistas & inhibidores , Islas Genómicas , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/genética , Proteínas Represoras/antagonistas & inhibidores , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
11.
PLoS Genet ; 8(6): e1002738, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685418

RESUMEN

Base-excision repair and control of nucleotide pools safe-guard against permanent uracil accumulation in DNA relying on two key enzymes: uracil-DNA glycosylase and dUTPase. Lack of the major uracil-DNA glycosylase UNG gene from the fruit fly genome and dUTPase from fruit fly larvae prompted the hypotheses that i) uracil may accumulate in Drosophila genomic DNA where it may be well tolerated, and ii) this accumulation may affect development. Here we show that i) Drosophila melanogaster tolerates high levels of uracil in DNA; ii) such DNA is correctly interpreted in cell culture and embryo; and iii) under physiological spatio-temporal control, DNA from fruit fly larvae, pupae, and imago contain greatly elevated levels of uracil (200-2,000 uracil/million bases, quantified using a novel real-time PCR-based assay). Uracil is accumulated in genomic DNA of larval tissues during larval development, whereas DNA from imaginal tissues contains much less uracil. Upon pupation and metamorphosis, uracil content in DNA is significantly decreased. We propose that the observed developmental pattern of uracil-DNA is due to the lack of the key repair enzyme UNG from the Drosophila genome together with down-regulation of dUTPase in larval tissues. In agreement, we show that dUTPase silencing increases the uracil content in DNA of imaginal tissues and induces strong lethality at the early pupal stages, indicating that tolerance of highly uracil-substituted DNA is also stage-specific. Silencing of dUTPase perturbs the physiological pattern of uracil-DNA accumulation in Drosophila and leads to a strongly lethal phenotype in early pupal stages. These findings suggest a novel role of uracil-containing DNA in Drosophila development and metamorphosis and present a novel example for developmental effects of dUTPase silencing in multicellular eukaryotes. Importantly, we also show lack of the UNG gene in all available genomes of other Holometabola insects, indicating a potentially general tolerance and developmental role of uracil-DNA in this evolutionary clade.


Asunto(s)
ADN/genética , Drosophila melanogaster/genética , Larva/genética , Pirofosfatasas , Uracilo , Animales , Línea Celular , ADN/química , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Inestabilidad Genómica , Células HeLa , Humanos , Larva/crecimiento & desarrollo , Pirofosfatasas/genética , Interferencia de ARN , Uracilo/química , Uracilo/metabolismo , Uracilo/farmacología , Uracil-ADN Glicosidasa/genética
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2777-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286861

RESUMEN

The authors respond to a comment by Alvisi & Jans [(2014), Acta Cryst. D70, 2775-2776] on the article Phosphorylation adjacent to the nuclear localization signal of human dUTPase abolishes nuclear import: structural and mechanistic insights [Róna et al. (2013), Acta Cryst. D69, 2495-2505].


Asunto(s)
Pirofosfatasas/metabolismo , alfa Carioferinas/metabolismo , Humanos
13.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260436

RESUMEN

The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.

14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2298-308, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311572

RESUMEN

Genome integrity requires well controlled cellular pools of nucleotides. dUTPases are responsible for regulating cellular dUTP levels and providing dUMP for dTTP biosynthesis. In Staphylococcus, phage dUTPases are also suggested to be involved in a moonlighting function regulating the expression of pathogenicity-island genes. Staphylococcal phage trimeric dUTPase sequences include a specific insertion that is not found in other organisms. Here, a 2.1 Šresolution three-dimensional structure of a ϕ11 phage dUTPase trimer with complete localization of the phage-specific insert, which folds into a small ß-pleated mini-domain reaching out from the dUTPase core surface, is presented. The insert mini-domains jointly coordinate a single Mg2+ ion per trimer at the entrance to the threefold inner channel. Structural results provide an explanation for the role of Asp95, which is suggested to have functional significance in the moonlighting activity, as the metal-ion-coordinating moiety potentially involved in correct positioning of the insert. Enzyme-kinetics studies of wild-type and mutant constructs show that the insert has no major role in dUTP binding or cleavage and provide a description of the elementary steps (fast binding of substrate and release of products). In conclusion, the structural and kinetic data allow insights into both the phage-specific characteristics and the generally conserved traits of ϕ11 phage dUTPase.


Asunto(s)
Pirofosfatasas/química , Pirofosfatasas/metabolismo , Fagos de Staphylococcus/enzimología , Secuencia de Aminoácidos , Cationes Bivalentes/metabolismo , Magnesio/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Alineación de Secuencia , Fagos de Staphylococcus/química , Staphylococcus aureus/virología
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2495-505, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311590

RESUMEN

Phosphorylation adjacent to nuclear localization signals (NLSs) is involved in the regulation of nucleocytoplasmic transport. The nuclear isoform of human dUTPase, an enzyme that is essential for genomic integrity, has been shown to be phosphorylated on a serine residue (Ser11) in the vicinity of its nuclear localization signal; however, the effect of this phosphorylation is not yet known. To investigate this issue, an integrated set of structural, molecular and cell biological methods were employed. It is shown that NLS-adjacent phosphorylation of dUTPase occurs during the M phase of the cell cycle. Comparison of the cellular distribution of wild-type dUTPase with those of hyperphosphorylation- and hypophosphorylation-mimicking mutants suggests that phosphorylation at Ser11 leads to the exclusion of dUTPase from the nucleus. Isothermal titration microcalorimetry and additional independent biophysical techniques show that the interaction between dUTPase and importin-α, the karyopherin molecule responsible for `classical' NLS binding, is weakened significantly in the case of the S11E hyperphosphorylation-mimicking mutant. The structures of the importin-α-wild-type and the importin-α-hyperphosphorylation-mimicking dUTPase NLS complexes provide structural insights into the molecular details of this regulation. The data indicate that the post-translational modification of dUTPase during the cell cycle may modulate the nuclear availability of this enzyme.


Asunto(s)
Pirofosfatasas/metabolismo , alfa Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Ciclo Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Señales de Localización Nuclear , Fosforilación , Pirofosfatasas/química , alfa Carioferinas/química
16.
J Vis Exp ; (202)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189447

RESUMEN

DNA has dedicated cellular repair pathways capable of coping with lesions that could arise from both endogenous and/or exogenous sources. DNA repair necessitates collaboration between numerous proteins, responsible for covering a broad range of tasks from recognizing and signaling the presence of a DNA lesion to physically repairing it. During this process, tracks of single-stranded DNA (ssDNA) are often created, which are eventually filled by DNA polymerases. The nature of these ssDNA tracks (in terms of both length and number), along with the polymerase recruited to fill these gaps, are repair pathway-specific. The visualization of these ssDNA tracks can help us understand the complicated dynamics of DNA repair mechanisms. This protocol provides a detailed method for the preparation of G1 synchronized cells to measure ssDNA foci formation upon genotoxic stress. Using an easy-to-utilize immunofluorescence approach, we visualize ssDNA by staining for RPA2, a component of the heterotrimeric replication protein A complex (RPA). RPA2 binds to and stabilizes ssDNA intermediates that arise upon genotoxic stress or replication to control DNA repair and DNA damage checkpoint activation. 5-Ethynyl-2'-deoxyuridine (EdU) staining is used to visualize DNA replication to exclude any S phase cells. This protocol provides an alternative approach to the conventional, non-denaturing 5-bromo-2'-deoxyuridine (BrdU)-based assays and is better suited for the detection of ssDNA foci outside the S phase.


Asunto(s)
Reparación del ADN , ADN de Cadena Simple , Ciclo Celular , División Celular , Fase G1
17.
Sci Adv ; 9(41): eadh1134, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831778

RESUMEN

Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.


Asunto(s)
Endosomas , ATPasas de Translocación de Protón Vacuolares , Autofagia , Membrana Celular/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , ATPasas de Translocación de Protón Vacuolares/química , Humanos
18.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34862481

RESUMEN

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Exorribonucleasas/metabolismo , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Células A549 , Adenosina Monofosfato/farmacología , Alanina/farmacología , Antivirales/farmacología , Humanos , SARS-CoV-2/enzimología , Replicación Viral/efectos de los fármacos
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1411-3, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22102244

RESUMEN

Staphylococcus aureus superantigen-carrying pathogenicity islands (SaPIs) play a determinant role in spreading virulence genes among bacterial populations that constitute a major health hazard. Repressor (Stl) proteins are responsible for the transcriptional regulation of pathogenicity island genes. Recently, a derepressing interaction between the repressor Stl SaPIbov1 and dUTPase from the φ11 helper phage has been suggested [Tormo-Más et al. (2010), Nature (London), 465, 779-782]. Towards elucidation of the molecular mechanism of this interaction, this study reports the expression, purification and X-ray analysis of φ11 dUTPase, which contains a phage-specific polypeptide segment that is not present in other dUTPases. Crystals were obtained using the hanging-drop vapour-diffusion method at room temperature. Data were collected to 2.98 Å resolution from one type of crystal. The crystal of φ11 dUTPase belonged to the cubic space group I23, with unit-cell parameters a = 98.16 Å, α = ß = γ = 90.00°.


Asunto(s)
Pirofosfatasas/química , Fagos de Staphylococcus/enzimología , Staphylococcus aureus/virología , Cristalización , Cristalografía por Rayos X
20.
J Vis Exp ; (170)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33938899

RESUMEN

DNA damage repair maintains the genetic integrity of cells in a highly reactive environment. Cells may accumulate various types of DNA damage due to both endogenous and exogenous sources such as metabolic activities or UV radiation. Without DNA repair, the cell's genetic code becomes compromised, undermining the structures and functions of proteins and potentially causing disease. Understanding the spatiotemporal dynamics of the different DNA repair pathways in various cell cycle phases is crucial in the field of DNA damage repair. Current fluorescent microscopy techniques provide great tools to measure the recruitment kinetics of different repair proteins after DNA damage induction. DNA synthesis during the S phase of the cell cycle is a peculiar point in cell fate regarding DNA repair. It provides a unique window to screen the entire genome for mistakes. At the same time, DNA synthesis errors also pose a threat to DNA integrity that is not encountered in non-dividing cells. Therefore, DNA repair processes differ significantly in S phase as compared to other phases of the cell cycle, and those differences are poorly understood. The following protocol describes the preparation of cell lines and the measurement of dynamics of DNA repair proteins in S phase at locally induced DNA damage sites, using a laser-scanning confocal microscope equipped with a 405 nm laser line. Tagged PCNA (with mPlum) is used as a cell cycle marker combined with an AcGFP-labeled repair protein of interest (i.e., EXO1b) to measure the DNA damage recruitment in S phase.


Asunto(s)
Daño del ADN/genética , ADN/genética , Terapia por Láser/métodos , Fase S/genética , Terapia Ultravioleta/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA