Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 194(5): 785-795, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311118

RESUMEN

Necroptosis, considered as a form of programmed cell death, contributes to neural loss. The 5-hydroxytryptamine 4 receptor (5-HT4R) is involved in neurogenesis in the enteric nervous system. However, whether the activation of 5-HT4R can alleviate diabetic enteric neuropathy by inhibiting receptor-interacting protein kinase 3 (RIPK3)-mediated necroptosis is unclear. This study aimed to explore the beneficial effects of 5-HT4R agonist on enteric neuropathy in a mouse model of diabetes and the mechanisms underlying these effects. Diabetes developed neural loss in the colon of mice. 5-HT4Rs localized in submucosal and myenteric plexuses were confirmed. Administration of 5-HT4R agonist attenuated diabetes-induced colonic hypomotility and neural loss of the colon in mice. Remarkably, RIPK3, phosphorylated RIPK3, and its downstream target mixed lineage kinase domain-like protein (MLKL), two key proteins regulating necroptosis, were significantly up-regulated in the colon of diabetic mice. Treatment with 5-HT4R agonist appeared to inhibit diabetes-induced elevation of RIPK3, phosphorylated RIPK3, and MLKL in the colon of mice. Diabetes-induced up-regulation of MLKL in both the mucosa and the muscularis of the colon was prevented by Ripk3 deletion. Moreover, diabetes-evoked neural loss and delayed colonic transit were significantly inhibited by Ripk3 removal. These findings suggest that activation of 5-HT4Rs could potentially provide a protective effect against diabetic enteric neuropathy by suppressing RIPK3-mediated necroptosis.


Asunto(s)
Diabetes Mellitus Experimental , Proteínas Quinasas , Ratones , Animales , Proteínas Quinasas/metabolismo , Serotonina/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis , Fosforilación/fisiología
2.
Acta Pharmacol Sin ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702501

RESUMEN

Enteroendocrine cells (EECs) and vagal afferent neurons constitute functional sensory units of the gut, which have been implicated in bottom-up modulation of brain functions. Sodium oligomannate (GV-971) has been shown to improve cognitive functions in murine models of Alzheimer's disease (AD) and recently approved for the treatment of AD patients in China. In this study, we explored whether activation of the EECs-vagal afferent pathways was involved in the therapeutic effects of GV-971. We found that an enteroendocrine cell line RIN-14B displayed spontaneous calcium oscillations due to TRPA1-mediated calcium entry; perfusion of GV-971 (50, 100 mg/L) concentration-dependently enhanced the calcium oscillations in EECs. In ex vivo murine jejunum preparation, intraluminal infusion of GV-971 (500 mg/L) significantly increased the spontaneous and distension-induced discharge rate of the vagal afferent nerves. In wild-type mice, administration of GV-971 (100 mg· kg-1 ·d-1, i.g. for 7 days) significantly elevated serum serotonin and CCK levels and increased jejunal afferent nerve activity. In 7-month-old APP/PS1 mice, administration of GV-971 for 12 weeks significantly increased jejunal afferent nerve activity and improved the cognitive deficits in behavioral tests. Sweet taste receptor inhibitor Lactisole (0.5 mM) and the TRPA1 channel blocker HC-030031 (10 µM) negated the effects of GV-971 on calcium oscillations in RIN-14B cells as well as on jejunal afferent nerve activity. In APP/PS1 mice, co-administration of Lactisole (30 mg ·kg-1 ·d-1, i.g. for 12 weeks) attenuated the effects of GV-971 on serum serotonin and CCK levels, vagal afferent firing, and cognitive behaviors. We conclude that GV-971 activates sweet taste receptors and TRPA1, either directly or indirectly, to enhance calcium entry in enteroendocrine cells, resulting in increased CCK and 5-HT release and consequent increase of vagal afferent activity. GV-971 might activate the EECs-vagal afferent pathways to modulate cognitive functions.

3.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1874-1883, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37766457

RESUMEN

Hyperglycemia drives dysfunction of the intestinal barrier. 5-Hydroxytryptaine 4 receptor (5-HT 4R) agonists have been considered therapeutics for constipation in clnic. However, the roles of 5-HT 4R activation in mucosa should be fully realized. Here, we investigate the effects of 5-HT 4R activation on diabetes-induced disruption of the tight junction (TJ) barrier in the colon. Not surprisingly, the TJ barrier in diabetic mice with or without 5-HT 4R is tremendously destroyed, as indicated by increased serum fluorescein isothiocyanate (FITC)-dextran and decreased transepithelial electrical resistance (TER). Simultaneously, decreased expressions of TJ proteins are shown in both wild-type (WT) and 5-HT 4R knockout (KO) mice with diabetes. Notably, chronic treatment with intraperitoneal injection of a 5-HT 4R agonist in WT mice with diabetes repairs the TJ barrier and promotes TJ protein expressions, including occludin, claudin-1 and ZO-1, in the colon, whereas a 5-HT 4R agonist does not improve TJ barrier function or TJ protein expressions in 5-HT 4R KO mice with diabetes. Furthermore, stimulation of 5-HT 4R inhibits diabetes-induced upregulation of myosin light chain kinase (MLCK), Rho-associated coiled coil protein kinase 1 (ROCK1), and phosphorylated myosin light chain (p-MLC), which are key molecules that regulate TJ integrity, in the colonic mucosa of WT mice. However, such action induced by a 5-HT 4R agonist is not observed in 5-HT 4R KO mice with diabetes. These findings indicate that 5-HT 4R activation may restore TJ integrity by inhibiting the expressions of MLCK, ROCK1 and p-MLC, improving epithelial barrier function in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Receptores de Serotonina 5-HT4 , Animales , Ratones , Colon/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Serotonina 5-HT4/genética , Receptores de Serotonina 5-HT4/metabolismo , Serotonina/farmacología , Serotonina/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas
4.
J Neurosci ; 41(37): 7727-7741, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34349001

RESUMEN

Chronic itch is a troublesome condition and often difficult to cure. Emerging evidence suggests that the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway may play an important role in the regulation of itch, but the cellular organization and molecular mechanisms remain incompletely understood. Here, we report that a group of RVM neurons distinctively express the G-protein-coupled estrogen receptor (GPER), which mediates descending inhibition of itch. We found that GPER+ neurons in the RVM were activated in chronic itch conditions in rats and mice. Selective ablation or chemogenetic suppression of RVM GPER+ neurons resulted in mechanical alloknesis and increased scratching in response to pruritogens, whereas chemogenetic activation of GPER+ neurons abrogated itch responses, indicating that GPER+ neurons are antipruritic. Moreover, GPER-deficient mice and rats of either sex exhibited hypersensitivity to mechanical and chemical itch, a phenotype reversible by the µ type opioid receptor (MOR) antagonism. Additionally, significant MOR phosphorylation in the RVM was detected in chronic itch models in wild-type but not in GPER-/- rats. Therefore, GPER not only identifies a population of medullary antipruritic neurons but may also determine the descending antipruritic tone through regulating µ opioid signaling.SIGNIFICANCE STATEMENT Therapeutic options for itch are limited because of an as yet incomplete understanding of the mechanisms of itch processing. Our data have provided novel insights into the cellular organization and molecular mechanisms of descending regulation of itch in normal and pathologic conditions. GPER+ neurons (largely GABAergic) in the RVM are antipruritic neurons under tonic opioidergic inhibition, activation of GPER promotes phosphorylation of MOR and disinhibition of the antipruritic GPER+ neurons from inhibitory opioidergic inputs, and failure to mobilize GPER+ neurons may result in the exacerbation of itch. Our data also illuminate on some of the outstanding questions in the field, such as the mechanisms underlying sex bias in itch, pain, and opioid analgesia and the paradoxical effects of morphine on pain and itch.


Asunto(s)
Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Femenino , Masculino , Ratones , Fosforilación , Prurito/genética , Prurito/metabolismo , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Opioides mu/metabolismo , Transducción de Señal/fisiología
5.
J Physiol ; 599(1): 39-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33052604

RESUMEN

The transient receptor potential vanilloid type 4, TRPV4, is a polymodal cation channel which can be activated by diverse stimuli including mechanical, thermal and chemical cues. In the urinary bladder, TRPV4 is not only abundantly expressed in the urothelium but may also be localized in subepithelium, detrusor smooth muscles and afferent neurons. Emerging evidence indicates that the TRPV4 channel plays a sensory role in the uroepithelium, where it may regulate the release of sensory mediators such as ATP, which in turn modulates afferent nerve activity in response to bladder filling during the urination cycle. TRPV4 may also directly regulate detrusor contractility and the urothelial barrier function. Altered TRPV4 expression has been detected in various pathological bladder conditions. As such, TRPV4 may be a promising therapeutic target for bladder dysfunctions.


Asunto(s)
Canales Catiónicos TRPV , Vejiga Urinaria , Músculo Liso , Micción , Urotelio
6.
FASEB J ; 34(1): 263-286, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914645

RESUMEN

The newly recognized sensory role of bladder urothelium has generated intense interest in identifying its novel sensory molecules. Sensory receptor TRPV4 may serve such function. However, specific and physiologically relevant tissue actions of TRPV4, stretch-independent responses, and underlying mechanisms are unknown and its role in human conditions has not been examined. Here we showed TRPV4 expression in guinea-pig urothelium, suburothelium, and bladder smooth muscle, with urothelial predominance. Selective TRPV4 activation without stretch evoked significant ATP release-key urothelial sensory process, from live mucosa tissue, full-thickness bladder but not smooth muscle, and sustained muscle contractions. ATP release was mediated by Ca2+-dependent, pannexin/connexin-conductive pathway involving protein tyrosine kinase, but independent from vesicular transport and chloride channels. TRPV4 activation generated greater Ca2+ rise than purinergic activation in urothelial cells. There was intrinsic TRPV4 activity without exogeneous stimulus, causing ATP release. TRPV4 contributed to 50% stretch-induced ATP release. TRPV4 activation also triggered superoxide release. TRPV4 expression was increased with aging. Human bladder mucosa presented similarities to guinea pigs. Overactive bladders exhibited greater TRPV4-induced ATP release with age dependence. These data provide the first evidence in humans for the key functional role of TRPV4 in urothelium with specific mechanisms and identify TRPV4 up-regulation in aging and overactive bladders.


Asunto(s)
Contracción Muscular , Músculo Liso , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiología , Urotelio/fisiología , Animales , Calcio/metabolismo , Cobayas , Humanos , Canales Catiónicos TRPV/genética
7.
Biochem Biophys Res Commun ; 525(4): 1061-1067, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32184017

RESUMEN

Drug addiction is considered the pathological usurpation of normal learning and memory. G protein-coupled estrogen receptor 1 (GPER1) plays an important role in normal learning and memory, but the effect of GPER1 on addiction-related pathological memory has not been reported. Our study used GPER1 knockout (GPER1 KO) and wild-type (WT) mice to compare the sensitivity differences of morphine- and sucrose-induced conditioned place preference (CPP) and naloxone-induced conditioned place aversion (CPA), and differences in dopamine (DA) content in the nucleus accumbens (NAc) were determined by high performance liquid chromatography (HPLC). The results showed that GPER1 KO mice showed higher sensitivity to morphine-induced CPP and naloxone-induced CPA, and corresponding to the behavioral effect, the DA content in the NAc of GPER1 KO mice was significantly higher than that of WT mice. Interestingly, the sensitivity of GPER1 KO mice to sucrose-induced CPP did not differ from that of the WT mice, and there was no significant difference in the DA content in the NAc between the two genotypes of mice. GPER1 knockout promoted the formation of morphine addiction-related positive and aversive memory, and its molecular biological mechanism may be associated with increased DA content in the NAc. Therefore, GPER1 plays an important role in the formation of addiction-related pathological memory and may become a potential molecular target for drug addiction therapy.


Asunto(s)
Condicionamiento Psicológico , Memoria/efectos de los fármacos , Morfina/administración & dosificación , Trastornos Inducidos por Narcóticos/etiología , Narcóticos/administración & dosificación , Receptores de Estrógenos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Condicionamiento Psicológico/efectos de los fármacos , Dopamina/metabolismo , Técnicas de Inactivación de Genes , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naloxona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Trastornos Inducidos por Narcóticos/genética , Núcleo Accumbens/metabolismo , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética
8.
Neural Plast ; 2020: 8866187, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32908490

RESUMEN

Ample evidence suggests that estrogens have strong influences on the occurrence of stress-related mood disorders, but the underlying mechanisms remain poorly understood. Through multiple approaches, we demonstrate that the G protein-coupled estrogen receptor (GPER) is widely distributed along the HPA axis and in brain structures critically involved in mood control. Genetic ablation of GPER in the rat resulted in significantly lower basal serum corticosterone level but enhanced ACTH release in response to acute restraint stress, especially in the female. GPER-/- rats of either sex displayed increased anxiety-like behaviors and deficits in learning and memory. Additionally, GPER deficiency led to aggravation of anxiety-like behaviors following single-prolonged stress (SPS). SPS caused significant decreases in serum corticosterone in WT but not in GPER-deficient rats. The results highlight an important role of GPER at multiple sites in regulation of the HPA axis and mood.


Asunto(s)
Ansiedad/sangre , Ansiedad/fisiopatología , Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Receptores Acoplados a Proteínas G/fisiología , Hormona Adrenocorticotrópica/sangre , Animales , Conducta Animal , Femenino , Técnicas de Inactivación de Genes , Hipocampo/fisiología , Masculino , Ratas Transgénicas
9.
Sheng Li Xue Bao ; 72(3): 285-298, 2020 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-32572427

RESUMEN

The current study was aimed to investigate the potential effects of perinatal exposure to therapeutic dose of penicillin and cefixime on the cognitive behaviors, gastrointestinal (GI) motility and serum 5-hydroxytryptamine (5-HT) level in the offspring. Pregnant rats were continuously treated with cefixime or penicillin in the period between 1 week before and 1 week after labor. Behavior tests, including social preference, self-grooming and elevated plus maze tests, and intestinal motility tests were carried out on the offspring at age of 4 to 10 weeks. Serum 5-HT levels were detected with ELISA, and potassium/sodium hyperpolarization activated cyclic nucleotide-gated channel 2 (HCN2) and tryptophan hydroxylase 1 (TPH1) expression levels in colon epithelium of offspring were detected by Western blot and RT-qPCR. The results showed that, compared with the naive group, cefixime increased social behavior in the female offspring, but did not affect the male offspring. Compared with the naive group, cefixime significantly decreased colonic and intestinal transits, and increased cecum net weight and standardized cecum net weight in the male offspring, but did not affect the female offspring. The serum 5-HT levels in the male offspring, rather than the female offspring, in cefixime and penicillin groups were significantly increased compared with that in the naive group. The protein expression level of HCN2 in colon epithelium of the offspring in cefixime group was significantly down-regulated, and the TPH1 expression level was not significantly changed, compared with that in the naive group. These results suggest that perinatal antibiotics exposure may affect neural development and GI functions of the offspring, and the mechanism may involve peripheral 5-HT and gender-dependent factor.


Asunto(s)
Serotonina , Triptófano Hidroxilasa , Animales , Antibacterianos/farmacología , Colon , Femenino , Motilidad Gastrointestinal , Masculino , Ratones , Embarazo , Ratas
10.
Sheng Li Xue Bao ; 72(3): 347-360, 2020 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-32572432

RESUMEN

Interactions among the nervous, the endocrine and the immune systems enable the gut to respond to the dietary products, pathogens and microbiota, which maintains the homeostasis of the body. However, dysbiosis may induce or aggravate the gastrointestinal (GI) and extra-GI diseases through changing the activities of enteric nervous system (ENS), enteroendocrine cells and enteric immune cells. Here we review recent advances in the understandings on how intestinal flora may impact the enteric neuro-endocrine-immune system in the gut, thereby contributing to the regulation of pathophysiological processes.


Asunto(s)
Sistema Nervioso Entérico , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Humanos , Sistema Inmunológico
11.
Mol Pain ; 15: 1744806919830018, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30672380

RESUMEN

Elevated excitability of primary afferent neurons underlies chronic pain in patients with functional or inflammatory bowel diseases. Recent studies have established an essential role for an enhanced transient receptor potential vanilloid subtype 1 (TRPV1) signaling in mediating peripheral hyperalgesia in inflammatory conditions. Since colocalization of Toll-like receptor 4 (TLR4) and TRPV1 has been observed in primary afferents including the trigeminal sensory neurons and the dorsal root ganglion neurons, we test the hypothesis that TLR4 might regulate the expression and function of TRPV1 in primary afferent neurons in 2,4,6-trinitrobenzene sulfate (TNBS)-induced colitis using the TLR4-deficient and the wild-type C57 mice. Despite having a higher disease activity index following administration of 2,4,6-trinitrobenzene sulfate, the TLR4-deficient mice showed less inflammatory infiltration in the colon than the wild-type mice. Increased expression of TLR4 and TRPV1 as well as increased density of capsaicin-induced TRPV1 current was observed in L4-S2 dorsal root ganglion neurons of the wild-type colitis mice till two weeks post 2,4,6-trinitrobenzene sulfate treatment. In comparison, the TLR4-deficient colitis mice had lower TRPV1 expression and TRPV1 current density in dorsal root ganglion neurons with lower abdominal withdrawal response scores during noxious colonic distensions. In the wild type but not in the TLR4-deficient dorsal root ganglion neurons, acute administration of the TLR4 agonist lipopolysaccharide increased the capsaicin-evoked TRPV1 current. In addition, we found that the canonical signaling downstream of TLR4 was activated in 2,4,6-trinitrobenzene sulfate-induced colitis in the wild type but not in the TLR4-deficient mice. These results indicate that TLR4 may play a major role in regulation of TRPV1 signaling and peripheral hyperalgesia in inflammatory conditions.


Asunto(s)
Colitis/patología , Ganglios Espinales/patología , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo , Receptor Toll-Like 4/deficiencia , Regulación hacia Arriba/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Capsaicina/farmacología , Colitis/inducido químicamente , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/metabolismo , Neuronas/efectos de los fármacos , Receptor Toll-Like 4/genética , Ácido Trinitrobencenosulfónico/toxicidad
13.
Cereb Cortex ; 27(7): 3568-3585, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27341850

RESUMEN

Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits.


Asunto(s)
Hipocampo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Nucleótidos/farmacología , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Estado Epiléptico/patología , Adamantano/análogos & derivados , Adamantano/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/farmacología , Aminoquinolinas/farmacología , Animales , Modelos Animales de Enfermedad , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Agonistas Muscarínicos/toxicidad , Células-Madre Neurales/metabolismo , Pilocarpina/toxicidad , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2Y1/genética , Estado Epiléptico/inducido químicamente
14.
Acta Biochim Biophys Sin (Shanghai) ; 50(12): 1219-1226, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339176

RESUMEN

CC chemokine ligand 2 (CCL2) has been implicated in pathological pain, but the mechanism underlying the pronociceptive effect of CCL2 is not fully understood. Voltage-gated sodium (Nav) channels are important determinants of the excitability of sensory neurons. Hence we tested the hypothesis that CCL2 contributes to inflammatory pain via modulating Nav channel activity of primary afferent neurons. Chronic inflammatory pain was induced in rats by intraplantar injection of the complete Freud adjuvant (CFA) to one of the hind paws. Control rats received intraplantar injection of equal volume of saline. A significant increase of CCL2 mRNA and CCL2 receptor (CCR2) protein expression was detected in the ipsilateral dorsal root ganglion (DRG) in CFA-treated rats. Intraplantar injection of CCL2 protein in the control rats had minimal effect on the paw withdrawal threshold (PWT) in response to mechanical stimulation. However, in CFA-treated rats, intraplantar CCL2 led to an increase in pain responses. Patch-clamp recording of acutely dissociated DRG neurons revealed that CCL2 had minimum effect on the excitability of sensory neurons from control rats. However, CCL2 directly depolarized a large proportion of small to medium-sized sensory neurons from CFA-treated rats. In addition, CCL2 was found to enhance whole-cell TTX-sensitive sodium currents without significantly affecting the TTX-resistant sodium currents and the potassium currents. These results are in agreement with previous reports concerning the involvement of CCL2-CCR2 signaling in inflammatory hyperalgesia and further indicate that enhanced TTX-sensitive channel activity may partly underlie the pronociceptive effects of CCL2.


Asunto(s)
Quimiocina CCL2/farmacología , Inflamación/metabolismo , Neuronas Aferentes/efectos de los fármacos , Dolor/metabolismo , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Sinergismo Farmacológico , Adyuvante de Freund , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Masculino , Potenciales de la Membrana/efectos de los fármacos , Neuronas Aferentes/metabolismo , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética
15.
Mol Pain ; 13: 1744806917726416, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28812431

RESUMEN

Background Curcumin has been reported to have anti-inflammatory and anti-nociceptive effects. The present study was designed to explore the potential therapeutic effects of curcumin on visceral hyperalgesia and inflammation in a rat model of ulcerative colitis. We observed the effects of orally administered curcumin on the disease activity index, histological change in colon, colorectal distension-induced abdominal withdrawal reflex, the expression of transient receptor potential vanilloid 1 (TRPV1) and phosphorylated TRPV1 in dextran sulfate sodium-induced colitis rats. In addition, a HEK293 cell line stably expressing human TRPV1 (hTRPV1) was used to examine the effects of curcumin on the change in membrane expression of TRPV1 induced by phorbol myristate acetate (a protein kinase C activator). Results Repeated oral administration of curcumin inhibited the increase in abdominal withdrawal reflex score induced by dextran sulfate sodium without affecting dextran sulfate sodium-induced histological change of colon and the disease activity index. A significant increase in colonic expression of TRPV1 and pTRPV1 was observed in dextran sulfate sodium-treated rats and this was reversed by oral administration of curcumin. TRPV1 expression in L6-S1 dorsal root ganglion was increased in the small- to medium-sized isolectin B4-positive non-peptidergic and calcitonin gene-related peptide-positive peptidergic neurons in dextran sulfate sodium-treated rats and oral administration of curcumin mitigated such changes. In the HEK293 cell line stably expressing hTRPV1, curcumin (1, 3 µm) inhibited phorbol myristate acetate-induced upregulation of membrane TRPV1. Conclusion Oral administration of curcumin alleviates visceral hyperalgesia in dextran sulfate sodium-induced colitis rats. The anti-hyperalgesic effect is partially through downregulating the colonic expression and phosphorylation of TRPV1 on the afferent fibers projected from peptidergic and non-peptidergic nociceptive neurons of dorsal root ganglion.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Curcumina/administración & dosificación , Curcumina/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Canales Catiónicos TRPV/metabolismo , Vísceras/patología , Administración Oral , Animales , Colitis Ulcerosa/complicaciones , Colitis Ulcerosa/fisiopatología , Colon/patología , Curcumina/farmacología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/patología , Vértebras Lumbares/efectos de los fármacos , Vértebras Lumbares/patología , Vértebras Lumbares/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos , Acetato de Tetradecanoilforbol
16.
Sheng Li Xue Bao ; 69(5): 532-540, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29063102

RESUMEN

Numerous studies have demonstrated that estrogens may exert multifaceted effects on the cardiovascular system via activating the classical nuclear receptors ERα or ERß and the novel G protein coupled estrogen receptor (Gper). However, some studies have reported inconsistent cardiovascular phenotypes in Gper-deficient mice. The current study was aimed to reveal the effects of genetic deletion of Gper on the arterial blood pressure (ABP) and heart rate in rats. Gper-deficient Sprague-Dawley rats were generated by utilizing the CRISPR-Cas9 gene-editing technique. ABP of 10-week old male (n = 6) and 12-week old female (n = 6) Gper-deficient rats and age-matched wild type (WT) rats (6 females and 6 males) were measured under awake and restrained conditions through the non-invasive tail-cuff method daily for 8 (females) or 9 days (males). In the male WT rats, ABP and heart rate were slightly higher in day 1 to 4 than those in day 5 to 9, indicative of stress-related sympathoexcitation in the first few days and gradual adaptation to the restrained stress in later days. Gper-deficient rats had significantly higher ABP initially (male: day 1 to day 5; female: day 1 to day 3) and similar ABP in later days of measurement compared with the WT rats. The heart rate of male Gper-deficient rats was consistently higher than that of the male WT rats from day 1 to day 8. Both male and female Gper-deficient rats appeared to show slower body weight gain than the WT counterparts during the study period. Under anesthesia, ABP of Gper-deficient rats was not significantly different from their WT counterparts. These results indicate that Gper-deficient rats may be more sensitive to stress-induced sympathoexcitation and highlight the importance of Gper in the regulation of the cardiovascular function in stressful conditions.


Asunto(s)
Hipertensión/etiología , Receptores de Estrógenos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Estrés Psicológico/complicaciones , Animales , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
17.
Mol Pain ; 11: 74, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26652274

RESUMEN

BACKGROUND: Diabetic neuropathy in visceral organs such as the gastrointestinal (GI) tract is still poorly understood, despite that GI symptoms are among the most common diabetic complications. The present study was designed to explore the changes in visceral sensitivity and the underlying functional and morphological deficits of the sensory nerves in short-term diabetic rats. Here, we compared the colorectal distension (CRD)-induced visceromotor response (VMR, an index of visceral pain) in vivo, the mechanosensitivity of colonic afferents ex vivo as well as the expression of protein gene product (PGP) 9.5 and calcitonin gene-related peptide (CGRP) in colon between diabetic (3-6 weeks after streptozotocin injection) and control (age-matched vehicle injection) rats. RESULTS: VMR was markedly decreased in the diabetic compared to the control rats. There was a significant decrease in multiunit pelvic afferent nerve responses to ramp distension of the ex vivo colon and single unit analysis indicated that an impaired mechanosensitivity of low-threshold and wide dynamic range fibers may underlie the afferent hyposensitivity in the diabetic colon. Fewer PGP 9.5- or CGRP-immunoreactive fibers and lower protein level of PGP 9.5 were found in the colon of diabetic rats. CONCLUSIONS: These observations revealed the distinctive feature of colonic neuropathy in short-term diabetic rats that is characterized by a diminished sensory innervation and a blunted mechanosensitivity of the remnant sensory nerves.


Asunto(s)
Diabetes Mellitus Experimental/patología , Neuronas Aferentes/patología , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Colon/inervación , Colon/fisiopatología , Diabetes Mellitus Experimental/fisiopatología , Regulación de la Expresión Génica , Masculino , Ratas , Ratas Sprague-Dawley , Ubiquitina Tiolesterasa/genética , Vísceras/fisiopatología
18.
Sheng Li Xue Bao ; 66(4): 431-7, 2014 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-25131784

RESUMEN

The study was aimed to investigate the changes in mechanical pain threshold in the condition of chronic inflammatory pain after transient receptor potential vanilloid 1 (TRPV1) gene was knockout. Hind-paw intraplantar injection of complete freund's adjuvant (CFA, 20 µL) produced peripheral inflammation in wild-type and TRPV1 knockout female mice. The mechanical pain thresholds were measured during the 8 days after injection and pre-injection by using Von-Frey hair. Nine days after injection, mice were killed and the differences of expression of c-Fos and P2X3 receptor in the dorsal root ganglia (DRG) and spinal cord dorsal horn were examined by Western blotting between the two groups. Compared with that in wild-type mice, the mechanical pain threshold was increased significantly in TRPV1 knockout mice (P < 0.05); 3 days after CFA injection, the baseline mechanical pain threshold in the TRPV1 knockout mice group was significantly higher than that in the wild-type mice group (P < 0.05); The result of Western blotting showed that the expression of c-Fos protein both in DRG and spinal cord dorsal horn of TRPV1 knockout mice group was decreased significantly compared with that in wild-type mice group (P < 0.01, P < 0.05), while the expression of P2X3 receptor in DRG of TRPV1 knockout mice group was increased significantly compared with that in wild-type mice group (P < 0.05). Our findings indicate that TRPV1 may influence the peripheral mechanical pain threshold by mediating the expression of c-Fos protein both in DRG and spinal cord dorsal horn and changing the expression of P2X3 receptor in DRG.


Asunto(s)
Ganglios Espinales/metabolismo , Dolor/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animales , Femenino , Ratones , Ratones Noqueados , Umbral del Dolor , Proteínas Proto-Oncogénicas c-fos/metabolismo , Médula Espinal/metabolismo , Canales Catiónicos TRPV/genética , Regulación hacia Arriba
19.
Gastroenterology ; 142(4): 834-843.e3, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22245844

RESUMEN

BACKGROUND & AIMS: The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. METHODS: In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. RESULTS: Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. CONCLUSIONS: We identified a neural glucoregulatory function of duodenal PKA signaling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Duodeno/enzimología , Duodeno/inervación , Glucosa/metabolismo , Hígado/inervación , Hígado/metabolismo , Nervio Vago/fisiología , Animales , Colecistoquinina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Dieta Alta en Grasa , Duodeno/efectos de los fármacos , Activación Enzimática , Activadores de Enzimas/farmacología , Técnica de Clampeo de la Glucosa , Homeostasis , Antagonistas de Hormonas/farmacología , Masculino , Páncreas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptor de Colecistoquinina B/antagonistas & inhibidores , Receptor de Colecistoquinina B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Vagotomía , Nervio Vago/efectos de los fármacos
20.
J Chem Neuroanat ; 132: 102319, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495162

RESUMEN

OBJECTIVE: This study aimed to confirm that G protein-coupled estrogen receptor 1 (GPER1) deficiency affects cognitive function by reducing hippocampal neurogenesis via the PKA/ERK/IGF-I signaling pathway in mice with schizophrenia (SZ). METHODS: Mice were divided into four groups, namely, KO Con, WT Con, KO Con, and WT SZ (n = 12 in each group). All mice were accustomed to the behavioral equipment overnight in the testing service room. The experimental conditions were consistent with those in the animal house. Forced swimming test and Y-maze test were conducted. Neuronal differentiation and maturation were detected using immunofluorescence and confocal imaging. The protein in the PKA/ERK/IGF-I signaling pathway was tested using Western blot analysis. RESULTS: GPER1 KO aggravated depression during forced swimming test and decreased cognitive ability during Y-maze test in the mouse model of dizocilpine maleate (MK-801)-induced SZ. Immunofluorescence and confocal imaging results demonstrated that GPER1 knockout reduced adult hippocampal dentate gyrus neurogenesis. Furthermore, GPER1-KO aggravated the hippocampal damage induced by MK-801 in mice through the PKA/ERK/IGF-I signaling pathway. CONCLUSIONS: GPER1 deficiency reduced adult hippocampal neurogenesis and neuron survival by regulating the PKA/ERK/IGF-I signaling pathway in the MK-801-induced mouse model of SZ.


Asunto(s)
Receptor alfa de Estrógeno , Hipocampo , Neurogénesis , Esquizofrenia , Animales , Ratones , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacología , Receptor alfa de Estrógeno/genética , Proteínas de Unión al GTP/metabolismo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA