RESUMEN
Spectroscopic methods are a promising approach for providing a point-of-care diagnostic method for gastrointestinal mucosa associated illnesses. Such a tool is desired to aid immediate decision making and to provide a faster pathway to appropriate treatment. In this pilot study, Raman, near-infrared, low frequency Raman, and autofluoresence spectroscopic methods were explored alone and in combination for the diagnosis of celiac disease. Duodenal biopsies (n = 72) from 24 participants were measured ex vivo using the full suite of studied spectroscopic methods. Exploratory principal component analysis (PCA) highlighted the origin of spectral differences between celiac and normal tissue with celiac biopsies tending to have higher protein relative to lipid signals and lower carotenoid spectral signals than the samples with normal histology. Classification of the samples based on the histology and overall diagnosis was carried out for all combinations of spectroscopic methods. Diagnosis based classification (majority rule of class per participant) yielded sensitivities of 0.31 to 0.77 for individual techniques, which was increased up to 0.85 when coupling multiple techniques together. Likewise, specificities of 0.50 to 0.67 were obtained for individual techniques, which was increased up to 0.78 when coupling multiple techniques together. It was noted that the use of antidepressants contributed to false positives, which is believed to be associated with increased serotonin levels observed in the gut mucosa in both celiac disease and the use of selective serotonin reuptake inhibitors (SSRIs); however, future work with greater numbers is required to confirm this observation. Inclusion of two additional spectroscopic methods could improve the accuracy of diagnosis (0.78) by 7% over Raman alone (0.73). This demonstrates the potential for further exploration and development of a multispectroscopic system for disease diagnosis.
Asunto(s)
Enfermedad Celíaca , Análisis de Componente Principal , Espectrometría Raman , Enfermedad Celíaca/diagnóstico , Humanos , Proyectos Piloto , Espectroscopía Infrarroja CortaRESUMEN
This study uses a multimodal analytical approach to evaluate the rates of (co)amorphization of milled drug and excipient and the effectiveness of different analytical methods in detecting these changes. Indomethacin and tryptophan were the model substances, and the analytical methods included low-frequency Raman spectroscopy (785 nm excitation and capable of measuring both low- (10 to 250 cm-1) and midfrequency (450 to 1800 cm-1) regimes, and a 830 nm system (5 to 250 cm-1)), conventional (200-3000 cm-1) Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRPD). The kinetics of amorphization were found to be faster for the mixture, and indeed, for indomethacin, only partial amorphization occurred (after 360 min of milling). Each technique was capable of identifying the transformations, but some, such as low-frequency Raman spectroscopy and XRPD, provided less ambiguous signatures than the midvibrational frequency techniques (conventional Raman and FTIR). The low-frequency Raman spectra showed intense phonon mode bands for the crystalline and cocrystalline samples that could be used as a sensitive probe of order. Multivariate analysis has been used to further interpret the spectral changes. Overall, this study demonstrates the potential of low-frequency Raman spectroscopy, which has several practical advantages over XRPD, for probing (dis-)order during pharmaceutical processing, showcasing its potential for future development, and implementation as an in-line process monitoring method.
Asunto(s)
Química Farmacéutica/métodos , Composición de Medicamentos , Espectrometría Raman/métodos , Rastreo Diferencial de Calorimetría/métodos , Cristalización , Indometacina/química , Cinética , Análisis Multivariante , Polvos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura , Difracción de Rayos X/métodosRESUMEN
To counter the growth of herbal medicines adulterated with pharmaceuticals crossing borders, rapid, inexpensive and non-destructive analytical techniques, that can handle complex matrices, are required. Since mid-infrared (MIR), near infrared (NIR) and Raman spectroscopic techniques meet these criteria, their performance in identifying adulterants in seized weightloss herbal medicines is definitively determined. Initially a validated high pressure liquid chromatography methodology was used for reference identification and quantification of the adulterants sibutramine H2O·HCl, fenfluramine HCl and phenolphthalein. Of 38 products, only sibutramine and phenolphthalein were detected by HPLC. The spectroscopic measurements showed Raman was ill-suited due to sample burning and emission while NIR lacked adulterant selectivity. Conversely, MIR demonstrated apt identification performance, which manifested as spectrally meaningful separation based on the presence and type of adulterant during principal component analysis (test set validated). Partial least squares regression models were constructed from the MIR training sets for sibutramine and phenolphthalein - both models fitted the training set data well. Average test set prediction errors were 0.8% for sibutramine and 2.2% for phenolphthalein over the respective concentration ranges of 1.7-11.7% and 0.9-34.4%. MIR is apposite for the screening of anorectic and laxative adulterants and is the most viable technique for wider adulterant screening in herbal medicines.