Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(7): 1061-1074.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868227

RESUMEN

Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.


Asunto(s)
ARN , Schizosaccharomyces , ARN/genética , ARN/metabolismo , ADN Primasa/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribonucleasas/genética
2.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352203

RESUMEN

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Asunto(s)
ADN Ligasa (ATP)/ultraestructura , Enzimas Reparadoras del ADN/ultraestructura , Proteína Quinasa Activada por ADN/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/ultraestructura , Apoptosis/genética , Microscopía por Crioelectrón , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestructura , Complejos Multiproteicos/genética , Fosforilación/genética
3.
Nucleic Acids Res ; 52(10): 5912-5927, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742632

RESUMEN

Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.


Asunto(s)
ADN de Cadena Simple , Proteínas de Unión al ADN , Mutación , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína
4.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870477

RESUMEN

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Asunto(s)
Proteínas de Unión al ADN , Ácido Fítico , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088835

RESUMEN

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


Asunto(s)
Reparación de la Incompatibilidad de ADN/fisiología , Endonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endonucleasas/química , Meiosis , Modelos Moleculares , Homólogo 1 de la Proteína MutL/química , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nucleic Acids Res ; 49(7): 3841-3855, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33744941

RESUMEN

Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.


Asunto(s)
Proteínas de Unión al ADN , ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
7.
Nucleic Acids Res ; 49(5): 2629-2641, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33590005

RESUMEN

We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/química , ADN/metabolismo , ADN Ligasas/metabolismo , Autoantígeno Ku/química , Multimerización de Proteína
8.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808390

RESUMEN

When combined with NMR spectroscopy, high hydrostatic pressure is an alternative perturbation method used to destabilize globular proteins that has proven to be particularly well suited for exploring the unfolding energy landscape of small single-domain proteins. To date, investigations of the unfolding landscape of all-ß or mixed-α/ß protein scaffolds are well documented, whereas such data are lacking for all-α protein domains. Here we report the NMR study of the unfolding pathways of GIPC1-GH2, a small α-helical bundle domain made of four antiparallel α-helices. High-pressure perturbation was combined with NMR spectroscopy to unravel the unfolding landscape at three different temperatures. The results were compared to those obtained from classical chemical denaturation. Whatever the perturbation used, the loss of secondary and tertiary contacts within the protein scaffold is almost simultaneous. The unfolding transition appeared very cooperative when using high pressure at high temperature, as was the case for chemical denaturation, whereas it was found more progressive at low temperature, suggesting the existence of a complex folding pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Desplegamiento Proteico/efectos de los fármacos , Humanos , Cinética , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Conformación Proteica en Hélice alfa/fisiología , Desnaturalización Proteica , Dominios Proteicos , Temperatura , Termodinámica
9.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923616

RESUMEN

DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.


Asunto(s)
Autoantígeno Ku/metabolismo , Animales , Reparación del ADN , Evolución Molecular , Humanos , Autoantígeno Ku/química , Autoantígeno Ku/genética , Procesamiento Proteico-Postraduccional
10.
Mol Cell ; 48(1): 75-86, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22940248

RESUMEN

Myosin VI is the only known reverse-direction myosin motor. It has an unprecedented means of amplifying movements within the motor involving rearrangements of the converter subdomain at the C terminus of the motor and an unusual lever arm projecting from the converter. While the average step size of a myosin VI dimer is 30-36 nm, the step size is highly variable, presenting a challenge to the lever arm mechanism by which all myosins are thought to move. Herein, we present structures of myosin VI that reveal regions of compliance that allow an uncoupling of the lead head when movement is modeled on actin. The location of the compliance restricts the possible actin binding sites and predicts the observed stepping behavior. The model reveals that myosin VI, unlike plus-end directed myosins, does not use a pure lever arm mechanism, but instead steps with a mechanism analogous to the kinesin neck-linker uncoupling model.


Asunto(s)
Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Sitios de Unión , Fenómenos Biofísicos , Calmodulina/química , Calmodulina/metabolismo , Adaptabilidad , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miosinas/química , Miosinas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Porcinos
11.
Nucleic Acids Res ; 46(19): 10460-10473, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30137533

RESUMEN

Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF's ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.


Asunto(s)
Proteínas de Unión al ADN/química , Lamina Tipo A/química , Proteínas de la Membrana/química , Proteínas Nucleares/química , Progeria/metabolismo , Dominios Proteicos , Cristalografía por Rayos X , Proteínas de Unión al ADN/metabolismo , Genes Recesivos , Humanos , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progeria/genética , Unión Proteica , Multimerización de Proteína
12.
Proc Natl Acad Sci U S A ; 113(13): E1844-52, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976594

RESUMEN

Molecular motors produce force when they interact with their cellular tracks. For myosin motors, the primary force-generating state has MgADP tightly bound, whereas myosin is strongly bound to actin. We have generated an 8-Å cryoEM reconstruction of this state for myosin V and used molecular dynamics flexed fitting for model building. We compare this state to the subsequent state on actin (Rigor). The ADP-bound structure reveals that the actin-binding cleft is closed, even though MgADP is tightly bound. This state is accomplished by a previously unseen conformation of the ß-sheet underlying the nucleotide pocket. The transition from the force-generating ADP state to Rigor requires a 9.5° rotation of the myosin lever arm, coupled to a ß-sheet rearrangement. Thus, the structure reveals the detailed rearrangements underlying myosin force generation as well as the basis of strain-dependent ADP release that is essential for processive myosins, such as myosin V.


Asunto(s)
Actinas/metabolismo , Adenosina Difosfato/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Actinas/química , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
13.
Proc Natl Acad Sci U S A ; 113(47): E7448-E7455, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27815532

RESUMEN

Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the "recovery stroke" transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Miosinas del Músculo Liso/antagonistas & inhibidores , Miosinas del Músculo Liso/química , Actinas/metabolismo , Sitio Alostérico , Animales , Cristalografía por Rayos X , Perros , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Relajación Muscular , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Unión Proteica/efectos de los fármacos , Ratas
14.
Proc Natl Acad Sci U S A ; 108(31): 12663-8, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768349

RESUMEN

Cernunnos/XLF is a core protein of the nonhomologous DNA end-joining (NHEJ) pathway that processes the majority of DNA double-strand breaks in mammals. Cernunnos stimulates the final ligation step catalyzed by the complex between DNA ligase IV and Xrcc4 (X4). Here we present the crystal structure of the X4(1-157)-Cernunnos(1-224) complex at 5.5-Å resolution and identify the relative positions of the two factors and their binding sites. The X-ray structure reveals a filament arrangement for X4(1-157) and Cernunnos(1-224) homodimers mediated by repeated interactions through their N-terminal head domains. A filament arrangement of the X4-Cernunnos complex was confirmed by transmission electron microscopy analyses both with truncated and full-length proteins. We further modeled the interface and used structure-based site-directed mutagenesis and calorimetry to characterize the roles of various residues at the X4-Cernunnos interface. We identified four X4 residues (Glu(55), Asp(58), Met(61), and Phe(106)) essential for the interaction with Cernunnos. These findings provide new insights into the molecular bases for stimulatory and bridging roles of Cernunnos in the final DNA ligation step.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Western Blotting , Calorimetría , Cristalografía por Rayos X , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Metionina/química , Metionina/genética , Metionina/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
15.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38547127

RESUMEN

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


Asunto(s)
División del ADN , Paramecium , Paramecium/genética , Paramecium/metabolismo , Roturas del ADN de Doble Cadena , Genoma de Protozoos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Reparación del ADN , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Reparación del ADN por Unión de Extremidades
16.
Elife ; 122024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376141

RESUMEN

Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.


Asunto(s)
Histonas , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Saccharomyces cerevisiae/genética , ADN/metabolismo , Nucleosomas/metabolismo
17.
Hum Mutat ; 34(12): 1597-605, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24014347

RESUMEN

Microvillus inclusion disease (MVID) is one of the most severe congenital intestinal disorders and is characterized by neonatal secretory diarrhea and the inability to absorb nutrients from the intestinal lumen. MVID is associated with patient-, family-, and ancestry-unique mutations in the MYO5B gene, encoding the actin-based motor protein myosin Vb. Here, we review the MYO5B gene and all currently known MYO5B mutations and for the first time methodologically categorize these with regard to functional protein domains and recurrence in MYO7A associated with Usher syndrome and other myosins. We also review animal models for MVID and the latest data on functional studies related to the myosin Vb protein. To congregate existing and future information on MVID geno-/phenotypes and facilitate its quick and easy sharing among clinicians and researchers, we have constructed an online MOLGENIS-based international patient registry (www.MVID-central.org). This easily accessible database currently contains detailed information of 137 MVID patients together with reported clinical/phenotypic details and 41 unique MYO5B mutations, of which several unpublished. The future expansion and prospective nature of this registry is expected to improve disease diagnosis, prognosis, and genetic counseling.


Asunto(s)
Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Sistemas en Línea , Sistema de Registros , Animales , Modelos Animales de Enfermedad , Enterocitos/metabolismo , Enterocitos/patología , Humanos , Síndromes de Malabsorción/diagnóstico , Síndromes de Malabsorción/metabolismo , Microvellosidades/genética , Microvellosidades/metabolismo , Mucolipidosis/diagnóstico , Mucolipidosis/metabolismo , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Miosinas/genética
18.
Chem Commun (Camb) ; 59(56): 8696-8699, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37347155

RESUMEN

In the search for foldamer inhibitors of the histone chaperone ASF1, we explored the possibility of substituting four α-residues (≈one helix turn) by 3-urea segments and scanned the sequence of a short α-helical peptide known to bind ASF1. By analysing the impact of the different foldamer replacements within the peptide chain, we uncovered new binding modes of the peptide-urea chimeras to ASF1.


Asunto(s)
Chaperonas de Histonas , Histonas , Chaperonas de Histonas/metabolismo , Histonas/química , Chaperonas Moleculares/química , Proteínas de Ciclo Celular/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
19.
Structure ; 31(8): 895-902.e3, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37311458

RESUMEN

The ability of humans to maintain the integrity of the genome is imperative for cellular survival. DNA double-strand breaks (DSBs) are considered the most critical type of DNA lesion, which can ultimately lead to diseases including cancer. Non-homologous end joining (NHEJ) is one of two core mechanisms utilized to repair DSBs. DNA-PK is a key component in this process and has recently been shown to form alternate long-range synaptic dimers. This has led to the proposal that these complexes can be formed before transitioning to a short-range synaptic complex. Here we present cryo-EM data representing an NHEJ supercomplex consisting of a trimer of DNA-PK in complex with XLF, XRCC4, and DNA Ligase IV. This trimer represents a complex of both long-range synaptic dimers. We discuss the potential role of the trimeric structure, and possible higher order oligomers, as structural intermediates in the NHEJ mechanism, or as functional DNA repair centers.


Asunto(s)
Enzimas Reparadoras del ADN , Reparación del ADN , Humanos , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Microscopía por Crioelectrón , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP) , Proteína Quinasa Activada por ADN/metabolismo , ADN/genética
20.
Sci Adv ; 9(22): eadg2834, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37256950

RESUMEN

Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN , Humanos , Microscopía por Crioelectrón , ADN , Enzimas Reparadoras del ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA