RESUMEN
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection.We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions.
Asunto(s)
Inmunidad Adaptativa , Células Dendríticas , Animales , Diferenciación Celular , Humanos , Tolerancia Inmunológica , MacrófagosRESUMEN
Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.
Asunto(s)
Macrófagos , Neoplasias , Sepsis , Humanos , Sepsis/inmunología , Macrófagos/inmunología , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animales , Linfocitos T/inmunología , Receptores CCR2/metabolismo , Persona de Mediana Edad , Ratones , Anciano , Quimiocinas/metabolismo , AdultoRESUMEN
Sepsis and trauma cause inflammation and elevated susceptibility to hospital-acquired pneumonia. As phagocytosis by macrophages plays a critical role in the control of bacteria, we investigated the phagocytic activity of macrophages after resolution of inflammation. After resolution of primary pneumonia, murine alveolar macrophages (AMs) exhibited poor phagocytic capacity for several weeks. These paralyzed AMs developed from resident AMs that underwent an epigenetic program of tolerogenic training. Such adaptation was not induced by direct encounter of the pathogen but by secondary immunosuppressive signals established locally upon resolution of primary infection. Signal-regulatory protein α (SIRPα) played a critical role in the establishment of the microenvironment that induced tolerogenic training. In humans with systemic inflammation, AMs and also circulating monocytes still displayed alterations consistent with reprogramming six months after resolution of inflammation. Antibody blockade of SIRPα restored phagocytosis in monocytes of critically ill patients in vitro, which suggests a potential strategy to prevent hospital-acquired pneumonia.
Asunto(s)
Epigénesis Genética , Inflamación/etiología , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Animales , Biomarcadores , Reprogramación Celular , Citocinas/metabolismo , Humanos , Tolerancia Inmunológica , Inmunofenotipificación , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Pulmón/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos Alveolares/inmunología , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Fagocitosis/inmunología , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Immune profiling of COVID-19 patients has identified numerous alterations in both innate and adaptive immunity. However, whether those changes are specific to SARS-CoV-2 or driven by a general inflammatory response shared across severely ill pneumonia patients remains unknown. Here, we compared the immune profile of severe COVID-19 with non-SARS-CoV-2 pneumonia ICU patients using longitudinal, high-dimensional single-cell spectral cytometry and algorithm-guided analysis. COVID-19 and non-SARS-CoV-2 pneumonia both showed increased emergency myelopoiesis and displayed features of adaptive immune paralysis. However, pathological immune signatures suggestive of T cell exhaustion were exclusive to COVID-19. The integration of single-cell profiling with a predicted binding capacity of SARS-CoV-2 peptides to the patients' HLA profile further linked the COVID-19 immunopathology to impaired virus recognition. Toward clinical translation, circulating NKT cell frequency was identified as a predictive biomarker for patient outcome. Our comparative immune map serves to delineate treatment strategies to interfere with the immunopathologic cascade exclusive to severe COVID-19.
Asunto(s)
COVID-19/inmunología , SARS-CoV-2/patogenicidad , Adulto , Enzima Convertidora de Angiotensina 2/metabolismo , Presentación de Antígeno , Biomarcadores/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , COVID-19/patología , Femenino , Antígenos HLA/genética , Antígenos HLA/inmunología , Humanos , Inmunidad Innata , Inmunofenotipificación , Masculino , Persona de Mediana Edad , Células T Asesinas Naturales/inmunología , Neumonía/inmunología , Neumonía/patología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismoRESUMEN
Lung infections cause prolonged immune alterations and elevated susceptibility to secondary pneumonia. We found that, after resolution of primary viral or bacterial pneumonia, dendritic cells (DC), and macrophages exhibited poor antigen-presentation capacity and secretion of immunogenic cytokines. Development of these "paralyzed" DCs and macrophages depended on the immunosuppressive microenvironment established upon resolution of primary infection, which involved regulatory T (Treg) cells and the cytokine TGF-ß. Paralyzed DCs secreted TGF-ß and induced local Treg cell accumulation. They also expressed lower amounts of IRF4, a transcription factor associated with increased antigen-presentation capacity, and higher amounts of Blimp1, a transcription factor associated with tolerogenic functions, than DCs present during primary infection. Blimp1 expression in DC of humans suffering sepsis or trauma correlated with severity and complicated outcomes. Our findings describe mechanisms underlying sepsis- and trauma-induced immunosuppression, reveal prognostic markers of susceptibility to secondary infections and identify potential targets for therapeutic intervention.
Asunto(s)
Células Dendríticas/inmunología , Infecciones por Escherichia coli/inmunología , Virus de la Influenza A/inmunología , Macrófagos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía/inmunología , Sepsis/inmunología , Anciano , Animales , Presentación de Antígeno , Diferenciación Celular , Células Cultivadas , Escherichia coli , Femenino , Humanos , Tolerancia Inmunológica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Factor 1 de Unión al Dominio 1 de Regulación Positiva , Linfocitos T Reguladores/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
In intensive care units, COVID-19 viral pneumonia patients (VPP) present symptoms similar to those of other patients with Nonviral infection (NV-ICU). To better manage VPP, it is therefore interesting to better understand the molecular pathophysiology of viral pneumonia and to search for biomarkers that may clarify the diagnosis. The secretome being a set of proteins secreted by cells in response to stimuli represents an opportunity to discover new biomarkers. The objective of this study is to identify the secretomic signatures of VPP with those of NV-ICU. Plasma samples and clinical data from NV-ICU (n = 104), VPP (n = 30) or healthy donors (HD, n = 20) were collected at Nantes Hospital (France) upon admission. Samples were enriched for the low-abundant proteins and analyzed using nontarget mass spectrometry. Specifically deregulated proteins (DEP) in VPP versus NV-ICU were selected. Combinations of 2 to 4 DEPs were established. The differences in secretome profiles of the VPP and NV-ICU groups were highlighted. Forty-one DEPs were specifically identified in VPP compared to NV-ICU. We describe five of the best combinations of 3 proteins (complement component C9, Ficolin-3, Galectin-3-binding protein, Fibrinogen alpha, gamma and beta chain, Proteoglycan 4, Coagulation factor IX and Cdc42 effector protein 4) that show a characteristic receptor function curve with an area under the curve of 95.0%. This study identifies five combinations of candidate biomarkers in VPP compared to NV-ICU that may help distinguish the underlying causal molecular alterations.
Asunto(s)
Biomarcadores , COVID-19 , Unidades de Cuidados Intensivos , Humanos , COVID-19/diagnóstico , COVID-19/complicaciones , COVID-19/sangre , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Proteómica/métodos , SARS-CoV-2 , Adulto , Neumonía Viral/diagnóstico , Neumonía Viral/virología , Neumonía Viral/sangre , Francia/epidemiologíaRESUMEN
BACKGROUND: The prognostication of long-term functional outcomes remains challenging in patients with traumatic brain injury (TBI). Our aim was to demonstrate that intensive care unit (ICU) variables are not efficient to predict 6-month functional outcome in survivors with moderate to severe TBI (msTBI) but are mostly associated with mortality, which leads to a mortality bias for models predicting a composite outcome of mortality and severe disability. METHODS: We analyzed the data from the multicenter randomized controlled Continuous Hyperosmolar Therapy in Traumatic Brain-Injured Patients trial and developed predictive models using machine learning methods and baseline characteristics and predictors collected during ICU stay. We compared our models' predictions of 6-month binary Glasgow Outcome Scale extended (GOS-E) score in all patients with msTBI (unfavorable GOS-E 1-4 vs. favorable GOS-E 5-8) with mortality (GOS-E 1 vs. GOS-E 2-8) and binary functional outcome in survivors with msTBI (severe disability GOS-E 2-4 vs. moderate to no disability GOS-E 5-8). We investigated the link between ICU variables and long-term functional outcomes in survivors with msTBI using predictive modeling and factor analysis of mixed data and validated our hypotheses on the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model. RESULTS: Based on data from 370 patients with msTBI and classically used ICU variables, the prediction of the 6-month outcome in survivors was inefficient (mean area under the receiver operating characteristic 0.52). Using factor analysis of mixed data graph, we demonstrated that high-variance ICU variables were not associated with outcome in survivors with msTBI (p = 0.15 for dimension 1, p = 0.53 for dimension 2) but mostly with mortality (p < 0.001 for dimension 1), leading to a mortality bias for models predicting a composite outcome of mortality and severe disability. We finally identified this mortality bias in the IMPACT model. CONCLUSIONS: We demonstrated using machine learning-based predictive models that classically used ICU variables are strongly associated with mortality but not with 6-month outcome in survivors with msTBI, leading to a mortality bias when predicting a composite outcome of mortality and severe disability.
RESUMEN
OBJECTIVE: We assessed the efficacy of a quality improvement programme to optimize the delivery of antimicrobial therapy in critically ill patients with hospital-acquired infections (HAI). PATIENTS AND METHODS: Before-after trial in a university hospital in France. Consecutive adults receiving systemic antimicrobial therapy for HAI were included. Patients received standard care during the pre-intervention period (June 2017 to November 2017). The quality improvement programme was implemented in December 2017. During the intervention period (January 2018 to June 2019), clinicians were trained to dose adjustment based on therapeutic drug monitoring and continuous infusion of ß-lactam antibiotics. The primary endpoint was the mortality rate at day 90. RESULTS: A total of 198 patients were included (58 pre-intervention, 140 intervention). The compliance with the therapeutic drug monitoring-dose adaptation increased from 20.3% to 59.3% after the intervention (Pâ<â0.0001). The 90-day mortality rate was 27.6% in the pre-intervention period and 17.3% in the intervention group (adjusted relative risk 0.53, 95%CI 0.27-1.07, Pâ=â0.08). Treatment failures were observed in 22 (37.9%) patients before and 36 (25.7%) patients after the intervention (Pâ=â0.07). CONCLUSIONS: Recommendations for therapeutic drug monitoring-dose adaptation and continuous infusion of ß-lactam antibiotics were not associated with a reduction in the 90-day mortality rate in patients with HAI.
Asunto(s)
Antiinfecciosos , Infección Hospitalaria , Adulto , Humanos , Antibacterianos , Mejoramiento de la Calidad , Antiinfecciosos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , beta-Lactamas/farmacocinética , HospitalesRESUMEN
OBJECTIVE: To describe the potential effects of ventilatory strategies on the outcome of acute brain-injured patients undergoing invasive mechanical ventilation. DESIGN: Systematic review with an individual data meta-analysis. SETTING: Observational and interventional (before/after) studies published up to August 22nd, 2022, were considered for inclusion. We investigated the effects of low tidal volume Vt < 8 ml/Kg of IBW versus Vt > = 8 ml/Kg of IBW, positive end-expiratory pressure (PEEP) < or > = 5 cmH2O and protective ventilation (association of both) on relevant clinical outcomes. POPULATION: Patients with acute brain injury (trauma or haemorrhagic stroke) with invasive mechanical ventilation for ≥ 24 h. MAIN OUTCOME MEASURES: The primary outcome was mortality at 28 days or in-hospital mortality. Secondary outcomes were the incidence of acute respiratory distress syndrome (ARDS), the duration of mechanical ventilation and the partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio. RESULTS: The meta-analysis included eight studies with a total of 5639 patients. There was no difference in mortality between low and high tidal volume [Odds Ratio, OR 0.88 (95%Confidence Interval, CI 0.74 to 1.05), p = 0.16, I2 = 20%], low and moderate to high PEEP [OR 0.8 (95% CI 0.59 to 1.07), p = 0.13, I2 = 80%] or protective and non-protective ventilation [OR 1.03 (95% CI 0.93 to 1.15), p = 0.6, I2 = 11]. Low tidal volume [OR 0.74 (95% CI 0.45 to 1.21, p = 0.23, I2 = 88%], moderate PEEP [OR 0.98 (95% CI 0.76 to 1.26), p = 0.9, I2 = 21%] or protective ventilation [OR 1.22 (95% CI 0.94 to 1.58), p = 0.13, I2 = 22%] did not affect the incidence of acute respiratory distress syndrome. Protective ventilation improved the PaO2/FiO2 ratio in the first five days of mechanical ventilation (p < 0.01). CONCLUSIONS: Low tidal volume, moderate to high PEEP, or protective ventilation were not associated with mortality and lower incidence of ARDS in patients with acute brain injury undergoing invasive mechanical ventilation. However, protective ventilation improved oxygenation and could be safely considered in this setting. The exact role of ventilatory management on the outcome of patients with a severe brain injury needs to be more accurately delineated.
Asunto(s)
Lesiones Encefálicas , Síndrome de Dificultad Respiratoria , Humanos , Respiración Artificial , Volumen de Ventilación Pulmonar , Síndrome de Dificultad Respiratoria/terapia , Oxígeno , Lesiones Encefálicas/terapiaRESUMEN
BACKGROUND: To evaluate if the increase in chloride intake during a continuous infusion of 20% hypertonic saline solution (HSS) is associated with an increase in the incidence of acute kidney injury (AKI) compared to standard of care in traumatic brain injury patients. METHODS: In this post hoc analysis of the COBI trial, 370 patients admitted for a moderate-to-severe TBI in the 9 participating ICUs were enrolled. The intervention consisted in a continuous infusion of HSS to maintain a blood sodium level between 150 and 155 mmol/L for at least 48 h. Patients enrolled in the control arm were treated as recommended by the latest Brain Trauma foundation guidelines. The primary outcome of this study was the occurrence of AKI within 28 days after enrollment. AKI was defined by stages 2 or 3 according to KDIGO criteria. RESULTS: After exclusion of missing data, 322 patients were included in this post hoc analysis. The patients randomized in the intervention arm received a significantly higher amount of chloride during the first 4 days (intervention group: 97.3 ± 31.6 g vs. control group: 61.3 ± 38.1 g; p < 0.001) and had higher blood chloride levels at day 4 (117.9 ± 10.7 mmol/L vs. 111.6 ± 9 mmol/L, respectively, p < 0.001). The incidence of AKI was not statistically different between the intervention and the control group (24.5% vs. 28.9%, respectively; p = 0.45). CONCLUSIONS: Despite a significant increase in chloride intake, a continuous infusion of HSS was not associated with AKI in moderate-to-severe TBI patients. Our study does not confirm the potentially detrimental effect of chloride load on kidney function in ICU patients. TRIAL REGISTRATION: The COBI trial was registered on clinicaltrial.gov (Trial registration number: NCT03143751, date of registration: 8 May 2017).
Asunto(s)
Lesión Renal Aguda , Lesiones Traumáticas del Encéfalo , Humanos , Cloruro de Sodio , Solución Salina , Cloruros , Lesiones Traumáticas del Encéfalo/complicaciones , Solución Salina Hipertónica/uso terapéutico , Lesión Renal Aguda/etiología , RiñónRESUMEN
BACKGROUND: Prevalence, risk factors and medical management of persistent pain symptoms after critical care illness have not been thoroughly investigated. METHODS: We performed a prospective multicentric study in patients with an intensive care unit (ICU) length of stay ≥ 48 h. The primary outcome was the prevalence of significant persistent pain, defined as a numeric rating scale (NRS) ≥ 3, 3 months after admission. Secondary outcomes were the prevalence of symptoms compatible with neuropathic pain (ID-pain score > 3) and the risk factors of persistent pain. RESULTS: Eight hundred fourteen patients were included over a 10-month period in 26 centers. Patients had a mean age of 57 (± 17) years with a SAPS 2 score of 32 (± 16) (mean ± SD). The median ICU length of stay was 6 [4-12] days (median [interquartile]). At 3 months, the median intensity of pain symptoms was 2 [1-5] in the entire population, and 388 (47.7%) patients had significant pain. In this group, 34 (8.7%) patients had symptoms compatible with neuropathic pain. Female (Odds Ratio 1.5 95% CI [1.1-2.1]), prior use of anti-depressive agents (OR 2.2 95% CI [1.3-4]), prone positioning (OR 3 95% CI [1.4-6.4]) and the presence of pain symptoms on ICU discharge (NRS ≥ 3) (OR 2.4 95% CI [1.7-3.4]) were risk factors of persistent pain. Compared with sepsis, patients admitted for trauma (non neuro) (OR 3.5 95% CI [2.1-6]) were particularly at risk of persistent pain. Only 35 (11.3%) patients had specialist pain management by 3 months. CONCLUSIONS: Persistent pain symptoms were frequent in critical illness survivors and specialized management remained infrequent. Innovative approaches must be developed in the ICU to minimize the consequences of pain. TRIAL REGISTRATION: NCT04817696. Registered March 26, 2021.
Asunto(s)
Enfermedad Crítica , Neuralgia , Humanos , Femenino , Persona de Mediana Edad , Prevalencia , Enfermedad Crítica/epidemiología , Enfermedad Crítica/terapia , Estudios Prospectivos , Cuidados Críticos , Factores de RiesgoRESUMEN
Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.
Asunto(s)
Lesiones Encefálicas , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Leucocitos Mononucleares , MonocitosRESUMEN
BACKGROUND: Health-related quality of life (HRQoL) is clearly recognized as a patient-important outcome in patients with traumatic brain injury (TBI). Patient-reported outcomes are therefore often used and supposed to be directly reported by the patients without interpretation of their responses by a physician or anyone else. However, patients with TBI are often unable to self-report because of physical and/or cognitive impairments. Thus, proxy-reported measures, e.g., family members, are often used on the patient's behalf. Yet, many studies have reported that proxy and patient ratings differ and are noncomparable. However, most studies usually do not account for other potential confounding factors that may be associated with HRQoL. In addition, patients and proxies can interpret some items of the patient-reported outcomes differently. As a result, item responses may not only reflect patients' HRQoL but also the respondent's (patient or proxy) own perception of the items. This phenomenon, called differential item functioning (DIF), can lead to substantial differences between patient-reported and proxy-reported measures and compromise their comparability, leading to highly biased HRQoL estimates. Using data from the prospective multicenter continuous hyperosmolar therapy in traumatic brain-injured patients study (240 patients with HRQoL measured with the Short Form-36 (SF-36)), we assessed the comparability of patients' and proxies' reports by evaluating the extent to which items perception differs (i.e., DIF) between patients and proxies after controlling for potential confounders. METHODS: Items at risk of DIF adjusting for confounders were examined on the items of the role physical and role emotional domains of the SF-36. RESULTS: Differential item functioning was evidenced in three out of the four items of the role physical domain measuring role limitations due to physical health problems and in one out of the three items of the role emotional domain measuring role limitations due to personal or emotional problems. Overall, despite an expected similar level of role limitations between patients who were able to respond and those for whom proxies responded, proxies tend to give more pessimistic responses than patients in the case of major role limitations and more optimistic responses than patients in the case of minor limitations. CONCLUSIONS: Patients with moderate-to-severe TBI and proxies seem to have different perceptions of the items measuring role limitations due to physical or emotional problems, questioning the comparability of patient and proxy data. Therefore, aggregating proxy and patient responses may bias HRQoL estimates and alter medical decision-making based on these patient-important outcomes.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Calidad de Vida , Humanos , Calidad de Vida/psicología , Estudios Prospectivos , Emociones , Lesiones Traumáticas del Encéfalo/psicología , Encuestas y CuestionariosRESUMEN
BACKGROUND: Comorbidities are risk factors for development of severe coronavirus disease 2019 (COVID-19). However, the extent to which an underlying comorbidity influences the immune response to severe acute respiratory syndrome coronavirus 2 remains unknown. OBJECTIVE: Our aim was to investigate the complex interrelations of comorbidities, the immune response, and patient outcome in COVID-19. METHODS: We used high-throughput, high-dimensional, single-cell mapping of peripheral blood leukocytes and algorithm-guided analysis. RESULTS: We discovered characteristic immune signatures associated not only with severe COVID-19 but also with the underlying medical condition. Different factors of the metabolic syndrome (obesity, hypertension, and diabetes) affected distinct immune populations, thereby additively increasing the immunodysregulatory effect when present in a single patient. Patients with disorders affecting the lung or heart, together with factors of metabolic syndrome, were clustered together, whereas immune disorder and chronic kidney disease displayed a distinct immune profile in COVID-19. In particular, severe acute respiratory syndrome coronavirus 2-infected patients with preexisting chronic kidney disease were characterized by the highest number of altered immune signatures of both lymphoid and myeloid immune branches. This overall major immune dysregulation could be the underlying mechanism for the estimated odds ratio of 16.3 for development of severe COVID-19 in this burdened cohort. CONCLUSION: The combinatorial systematic analysis of the immune signatures, comorbidities, and outcomes of patients with COVID-19 has provided the mechanistic immunologic underpinnings of comorbidity-driven patient risk and uncovered comorbidity-driven immune signatures.
Asunto(s)
COVID-19 , Síndrome Metabólico , Insuficiencia Renal Crónica , Comorbilidad , Humanos , Inmunidad , Síndrome Metabólico/epidemiología , SARS-CoV-2RESUMEN
Importance: It is uncertain whether a rapid-onset opioid is noninferior to a rapid-onset neuromuscular blocker during rapid sequence intubation when used in conjunction with a hypnotic agent. Objective: To determine whether remifentanil is noninferior to rapid-onset neuromuscular blockers for rapid sequence intubation. Design, Setting, and Participants: Multicenter, randomized, open-label, noninferiority trial among 1150 adults at risk of aspiration (fasting for <6 hours, bowel occlusion, recent trauma, or severe gastroesophageal reflux) who underwent tracheal intubation in the operating room at 15 hospitals in France from October 2019 to April 2021. Follow-up was completed on May 15, 2021. Interventions: Patients were randomized to receive neuromuscular blockers (1 mg/kg of succinylcholine or rocuronium; n = 575) or remifentanil (3 to 4 µg/kg; n = 575) immediately after injection of a hypnotic. Main Outcomes and Measures: The primary outcome was assessed in all randomized patients (as-randomized population) and in all eligible patients who received assigned treatment (per-protocol population). The primary outcome was successful tracheal intubation on the first attempt without major complications, defined as lung aspiration of digestive content, oxygen desaturation, major hemodynamic instability, sustained arrhythmia, cardiac arrest, and severe anaphylactic reaction. The prespecified noninferiority margin was 7.0%. Results: Among 1150 randomized patients (mean age, 50.7 [SD, 17.4] years; 573 [50%] women), 1130 (98.3%) completed the trial. In the as-randomized population, tracheal intubation on the first attempt without major complications occurred in 374 of 575 patients (66.1%) in the remifentanil group and 408 of 575 (71.6%) in the neuromuscular blocker group (between-group difference adjusted for randomization strata and center, -6.1%; 95% CI, -11.6% to -0.5%; P = .37 for noninferiority), demonstrating inferiority. In the per-protocol population, 374 of 565 patients (66.2%) in the remifentanil group and 403 of 565 (71.3%) in the neuromuscular blocker group had successful intubation without major complications (adjusted difference, -5.7%; 2-sided 95% CI, -11.3% to -0.1%; P = .32 for noninferiority). An adverse event of hemodynamic instability was recorded in 19 of 575 patients (3.3%) with remifentanil and 3 of 575 (0.5%) with neuromuscular blockers (adjusted difference, 2.8%; 95% CI, 1.2%-4.4%). Conclusions and Relevance: Among adults at risk of aspiration during rapid sequence intubation in the operating room, remifentanil, compared with neuromuscular blockers, did not meet the criterion for noninferiority with regard to successful intubation on first attempt without major complications. Although remifentanil was statistically inferior to neuromuscular blockers, the wide confidence interval around the effect estimate remains compatible with noninferiority and limits conclusions about the clinical relevance of the difference. Trial Registration: ClinicalTrials.gov Identifier: NCT03960801.
Asunto(s)
Analgésicos Opioides , Intubación Intratraqueal , Bloqueantes Neuromusculares , Intubación e Inducción de Secuencia Rápida , Remifentanilo , Aspiración Respiratoria , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/efectos adversos , Hipnóticos y Sedantes/uso terapéutico , Intubación Intratraqueal/efectos adversos , Intubación Intratraqueal/métodos , Bloqueantes Neuromusculares/administración & dosificación , Bloqueantes Neuromusculares/efectos adversos , Bloqueantes Neuromusculares/uso terapéutico , Intubación e Inducción de Secuencia Rápida/efectos adversos , Intubación e Inducción de Secuencia Rápida/métodos , Remifentanilo/administración & dosificación , Remifentanilo/efectos adversos , Remifentanilo/uso terapéutico , Aspiración Respiratoria/etiología , Aspiración Respiratoria/prevención & control , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/uso terapéutico , AncianoRESUMEN
BACKGROUND: Septic shock remains a major cause of death that can be complicated by long-term impairment in immune function. Among regulatory T (Treg) cells, the tumor necrosis factor receptor 2 positive (TNFR2pos) Treg-cell subset endorses significant immunosuppressive functions in human tumors and a sepsis mouse model but has not been investigated during septic shock in humans. METHODS: We prospectively enrolled patients with septic shock hospitalized in intensive care units (ICU). We performed immunophenotyping and functional tests of CD4+ T cells, Treg cells, and TNFR2pos Treg cells on blood samples collected 1, 4, and 7 days after admission to ICU. RESULTS: We investigated 10 patients with septic shock compared to 10 healthy controls. Although the proportions of circulating Treg cells and TNFR2pos Treg-cell subsets were not increased, their CTLA4 expression and suppressive functions in vitro were increased at 4 days of septic shock. Peripheral blood mononuclear cells from healthy donors cultured with serum from septic shock patients had increased CTLA4 expression in TNFR2pos Treg cells compared to TNFR2neg Treg cells. CONCLUSIONS: In patients with septic shock, CTLA4 expression and suppressive function were increased in circulating TNFR2pos Treg cells. We identify TNFR2pos Treg cells as a potential attractive target for therapeutic intervention.