Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stress ; 21(6): 484-493, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29676198

RESUMEN

To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.

2.
Am J Physiol Renal Physiol ; 311(3): F496-504, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252489

RESUMEN

Sepsis is an uncontrolled systemic inflammatory response against an infection and a major public health issue worldwide. This condition affects several organs, and, when caused by Gram-negative bacteria, kidneys are particularly damaged. Due to the importance of renin-angiotensin system (RAS) in regulating renal function, in the present study, we aimed to investigate the effects of endotoxemia over the renal RAS. Wistar rats were injected with Escherichia coli lipopolysaccharide (LPS) (4 mg/kg), mimicking the endotoxemia induced by Gram-negative bacteria. Three days after treatment, body mass, blood pressure, and plasma nitric oxide (NO) were reduced, indicating that endotoxemia triggered cardiovascular and metabolic consequences and that hypotension was maintained by NO-independent mechanisms. Regarding the effects in renal tissue, inducible NO synthase (iNOS) was diminished, but no changes in the renal level of NO were detected. RAS was also highly affected by endotoxemia, since renin, angiotensin-converting enzyme (ACE), and ACE2 activities were altered in renal tissue. Although these enzymes were modulated, only angiotensin (ANG) II was augmented in kidneys; ANG I and ANG 1-7 levels were not influenced by LPS. Cathepsin G and chymase activities were increased in the endotoxemia group, suggesting alternative pathways for ANG II formation. Taken together, our data suggest the activation of noncanonical pathways for ANG II production and the presence of renal vasoconstriction and tissue damage in our animal model. In summary, the systemic administration of LPS affects renal RAS, what may contribute for several deleterious effects of endotoxemia over kidneys.


Asunto(s)
Lesión Renal Aguda/metabolismo , Angiotensina II/metabolismo , Endotoxemia/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Endotoxemia/inducido químicamente , Endotoxemia/patología , Riñón/patología , Lipopolisacáridos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Ratas , Ratas Wistar , Renina/metabolismo , Sistema Renina-Angiotensina/fisiología
3.
Front Physiol ; 9: 1433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364140

RESUMEN

Overconsumption of fructose leads to metabolic syndrome as a result of hypertension, insulin resistance, and hyperlipidemia. In this study, the renal function of animals submitted to high fructose intake was analyzed from weaning to adulthood using in vivo and ex vivo methods, being compared with a normal control group. We investigated in ex vivo model of the role of the renin Angiotensin system (RAS) in the kidney. The use of perfused kidney from animals submitted to 8-week fructose treatment showed that high fructose intake caused metabolic and cardiovascular alterations that were consistent with other studies. Moreover, the isolated perfused kidneys obtained from rats under high fructose diet showed a 33% increase in renal perfusion pressure throughout the experimental period due to increased renal vascular resistance and a progressive fall in the glomerular filtration rate, which reached a maximum of 64% decrease. Analysis of RAS peptides in the high fructose group showed a threefold increase in the renal concentrations of angiotensin I (Ang I) and a twofold increase in angiotensin II (Ang II) levels, whereas no change in angiotensin 1-7 (Ang 1-7) was observed when compared with the control animals. We did not detect changes in angiotensin converting enzyme (ACE) activity in renal tissues, but there is a tendency to decrease. These observations suggest that there are alternative ways of producing Ang II in this model. Chymase the enzyme responsible for Ang II formation direct from Ang I was increased in renal tissues in the fructose group, confirming the alternative pathway for the formation of this peptide. Neprilysin (NEP) the Ang 1-7 forming showed a significant decrease in activity in the fructose vs. control group, and a tendency of reduction in ACE2 activity. Thus, these results suggest that the Ang 1-7 vasodilator peptide formation is impaired in this model contributing with the increase of blood pressure. In summary, rats fed high fructose affect renal RAS, which may contribute to several deleterious effects of fructose on the kidneys and consequently an increase in blood pressure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA