RESUMEN
BACKGROUND: An incorrect lifestyle, including diet, is responsible for the worldwide dramatic increase in obesity and type 2 diabetes. Increasing dietary fiber consumption may lead to health benefits, and reformulation of bakery products may be a strategy to globally improve the diet. OBJECTIVES: This study aimed to assess the impact of a 2-wk breakfast consumption with a sourdough-leavened croissant containing a blend of dietary fiber from 10 sources (4.8 g/100 g, croissant enriched with dietary fibers [FIBCRO]), compared with a control croissant (dietary fibers 1.3 g/100 g, CONCRO) on daily energy intake, appetite, metabolic variables, and the gut microbiome. METHODS: Thirty-two healthy participants were randomly allocated to 2 groups consuming FIBCRO or CONCRO. Participants self-recorded their diet and appetite through 7-d weighted food diaries and visual analog scales every day over the 2 wk. At baseline and after the intervention, fasting blood and urine samples, and fecal samples were collected beside blood pressure, anthropometry, and body composition. Serum glucose, lipids, C-reactive protein, and insulin according to the official methods and serum dipeptidyl peptidase-4 (DPPIV) activity by photometric method were measured. Polyphenols and urolithins in urines were analyzed by Liquid chromatography-tandem mass spectrometry (LC/MS/MS), whereas gut microbiome in feces by shotgun metagenomics. RESULTS: FIBCRO consumption improved fasting blood glucose compared with CONCRO (mean changes from baseline -2.0 mg/dL in FIBCRO compared with +3.1 mg/dL in CONCRO, P = 0.022), also reducing serum DPPIV activity by 1.7 IU/L (P = 0.01) and increasing urinary excretion of urolithin A-sulfate by 6.9 ng/mg creatinine (P = 0.04) compared with baseline. No further changes in any of the monitored variables or in the gut microbiome were detected. CONCLUSIONS: Results suggested that a 2-wk consumption of a sourdough croissant claimed as "source of dietary fiber" improved fasting glycemia compared with a conventional sourdough croissant in healthy subjects. The reduced serum DPPIV activity and increased bioavailability of urolithin likely contributed to determine that effect independently from gut microbiome changes. This trial was registered at clinicaltrials.gov as NCT04999280.
Asunto(s)
Glucemia , Pan , Fibras de la Dieta , Humanos , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/farmacología , Masculino , Femenino , Glucemia/análisis , Adulto , Pan/análisis , Microbioma Gastrointestinal , Persona de Mediana Edad , Ayuno , Adulto Joven , Voluntarios Sanos , DietaRESUMEN
Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably myocardial infarction and stroke. While reperfusion of ischemic tissue is essential for survival, it also initiates cell death through generation of mitochondrial reactive oxygen species (ROS). Recent work has revealed a novel pathway underlying ROS production at reperfusion in vivo in which the accumulation of succinate during ischemia and its subsequent rapid oxidation at reperfusion drives ROS production at complex I by reverse electron transport (RET). Pharmacologically inhibiting ischemic succinate accumulation, or slowing succinate metabolism at reperfusion, have been shown to be cardioprotective against IR injury. Here, we determined whether ischemic preconditioning (IPC) contributes to cardioprotection by altering kinetics of succinate accumulation and oxidation during IR. Mice were subjected to a 30-minute occlusion of the left anterior descending coronary artery followed by reperfusion, with or without a protective IPC protocol prior to sustained ischemia. We found that IPC had no effect on ischemic succinate accumulation with both control and IPC mice having profound increases in succinate compared to normoxia. Furthermore, after only 1-minute reperfusion succinate was rapidly metabolised returning to near pre-ischemic levels in both groups. We conclude that IPC does not affect ischemic succinate accumulation, or its oxidation at reperfusion.
Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/metabolismo , Oxidación-Reducción , Ácido Succínico/metabolismo , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Masculino , Metaboloma , Metabolómica/métodos , Ratones , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.
Asunto(s)
Sulfuro de Hidrógeno/química , Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Animales , Cationes , Línea Celular , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Femenino , Células HCT116 , Compuestos Heterocíclicos/química , Humanos , Hipoxia , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/metabolismo , Compuestos Organofosforados/química , Ratas Wistar , Espectrometría de Masas en Tándem , Temperatura , Rayos UltravioletaRESUMEN
Background: Europeans consume large quantities of bakery products, although these are known as one of the food categories that potentially leads to postprandial symptoms (such as fullness and bloating). Objective: The aim of this study was to evaluate the effects of sourdough baked goods on gastric emptying and gastrointestinal fermentation and symptoms in healthy people. Methods: In a double-blind, randomized crossover study, 2 sourdough croissants (SCs) or 2 brewer's yeast croissants (BCs) were served as single meals to 17 healthy adults [9 women; age range: 18-40 y; body mass index range (in kg/m2): 18-24]. Gastric volume (GV) was evaluated by magnetic resonance to calculate gastric-emptying rate in the 3-h interval after croissant ingestion. A hydrogen breath test was performed to measure hydrogen production after SC and BC ingestion. Palatability and postprandial gastrointestinal symptoms (discomfort, nausea, fullness, and bloating) over a 4-h period after the meal were evaluated. The area under the curve (AUC) was used to evaluate the overall effects on all variables tested. Results: The total GV AUC was reduced by 11% during the 3 h after the consumption of SCs compared with BCs (P = 0.02). Hydrogen production during the 4-h interval after ingestion of SCs was 30% lower than after BCs (P = 0.03). SCs were rated as being >2 times as palatable as BCs (P < 0.001). The overall severity of postprandial symptoms was 36% lower during the 4 h after intake of SCs compared with BCs (P = 0.05). Conclusion: Sourdough bakery products could promote better postprandial gastrointestinal function in healthy adults and be more acceptable than those prepared with brewer's yeast. This trial was registered at www.clinicaltrials.gov as NCT03207516.
Asunto(s)
Pan/microbiología , Fermentación , Tracto Gastrointestinal/fisiología , Lactobacillales/metabolismo , Periodo Posprandial , Saccharomyces cerevisiae/metabolismo , Adolescente , Adulto , Glucemia/análisis , Pruebas Respiratorias , Estudios Cruzados , Dieta , Método Doble Ciego , Femenino , Vaciamiento Gástrico , Humanos , Hidrógeno/análisis , Imagen por Resonancia Magnética , Masculino , Estómago/anatomía & histología , Estómago/diagnóstico por imagen , Circunferencia de la CinturaAsunto(s)
Artritis Psoriásica , Artritis Reumatoide , Humanos , Artritis Psoriásica/diagnóstico , Artritis Psoriásica/tratamiento farmacológico , Anticuerpos Monoclonales/efectos adversos , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/epidemiología , ItaliaRESUMEN
We investigated and compared the impact of organic loads due to the biodeposition of mussel and fish farms on the water column of a coastal area of the Tyrrhenian Sea (Western Mediterranean). Physico-chemical data (including oxygen, nutrients. DOC and particulate organic matter), microbial variables (picoplankton and picophytoplankton density and biomass) and phytoplankton biomass (as chlorophyll-a) were determined on a monthly basis from March 1997 to February 1998. The results of this study indicate that both fish farm and mussel culture did not alter significantly dissolved inorganic phosphorus and chlorophyll-a values, while inorganic nitrogen concentrations were higher in mussel farm area. However, waters overlying the fish farm presented significantly higher DOC concentrations. In contrast, no significant differences were observed comparing particulate matter concentrations. The increased DOC concentrations determined a response of the heterotrophic fraction of picoplankton, while picophytoplankton, likewise phytoplankton. did not display differences among fish or mussel farms and control site. From the analysis of the different microbial components, it is possible to conclude that the impact of fish farms is evident only for the heterotrophic components. The comparative analysis of the mussel biodeposition and fish-farm impact revealed that mussel farms induced a considerably lower disturbance, apparently limited to an increased density and biomass of microbial assemblages beneath the mussel cultures.