Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 82(15): 4821-4834, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27260355

RESUMEN

UNLABELLED: The capacity to internalize and catabolize carbohydrates is essential for dental caries pathogens to persist and cause disease. The expression of many virulence-related attributes by Streptococcus mutans, an organism strongly associated with human dental caries, is influenced by the peptide signaling pathways that control genetic competence. Here, we demonstrate a relationship between the efficiency of competence signaling and carbohydrate source. A significant increase in the activity of the promoters for comX, comS, and comYA after exposure to competence-stimulating peptide (CSP) was observed in cells growing on fructose, maltose, sucrose, or trehalose as the primary carbohydrate source, compared to cells growing on glucose. However, only cells grown in the presence of trehalose or sucrose displayed a significant increase in transformation frequency. Notably, even low concentrations of these carbohydrates in the presence of excess glucose could enhance the expression of comX, encoding a sigma factor needed for competence, and the effects on competence were dependent on the cognate sugar:phosphotransferase permease for each carbohydrate. Using green fluorescent protein (GFP) reporter fusions, we observed that growth in fructose or trehalose resulted in a greater proportion of the population activating expression of comX and comS, encoding the precursor of comX-inducing peptide (XIP), after addition of CSP, than growth in glucose. Thus, the source of carbohydrate significantly impacts the stochastic behaviors that regulate subpopulation responses to CSP, which can induce competence in S. mutans IMPORTANCE: The signaling pathways that regulate development of genetic competence in Streptococcus mutans are intimately intertwined with the pathogenic potential of the organism, impacting biofilm formation, stress tolerance, and expression of known virulence determinants. Induction of the gene for the master regulator of competence, ComX, by competence-stimulating peptide (CSP) occurs in a subpopulation of cells. Here, we show that certain carbohydrates that are common in the human diet enhance the ability of CSP to activate transcription of comX and that a subset of these carbohydrates stimulates progression to the competent state. The cognate sugar:phosphotransferase permeases for each sugar are needed for these effects. Interestingly, single-cell analysis shows that the carbohydrates that increase com gene expression do so by enhancing the proportion of cells that respond to CSP. A mathematical model is developed to explain how carbohydrates modulate bistable behavior in the system via the ComRS pathway and ComX stability.


Asunto(s)
Carbohidratos/química , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Factor sigma/genética , Factor sigma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA