Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 292(31): 12787-12800, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28637870

RESUMEN

Stress-induced p38 mitogen-activated protein kinase (MAPK) activity is implicated in pathological remodeling in the heart. For example, constitutive p38 MAPK activation in cardiomyocytes induces pathological features, including myocyte hypertrophy, apoptosis, contractile dysfunction, and fetal gene expression. However, the physiological function of cardiomyocyte p38 MAPK activity in beneficial compensatory vascular remodeling is unclear. This report investigated the functional role and the underlying mechanisms of cardiomyocyte p38 MAPK activity in cardiac remodeling induced by chronic stress. Using both in vitro and in vivo model systems, we found that p38 MAPK activity is required for hypoxia-induced pro-angiogenic activity from cardiomyocytes and that p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity. We further demonstrate that VEGF is a paracrine factor responsible for the p38 MAPK-mediated pro-angiogenic activity from cardiomyocytes and that p38 MAPK pathway activation is sufficient for inducing VEGF secretion from cardiomyocytes in an Sp1-dependent manner. More significantly, cardiomyocyte-specific inactivation of p38α in mouse heart impaired compensatory angiogenesis after pressure overload and promoted early onset of heart failure. In summary, p38αMAPK has a critical role in the cross-talk between cardiomyocytes and vasculature by regulating stress-induced VEGF expression and secretion in cardiomyocytes. We conclude that as part of a stress-induced signaling pathway, p38 MAPK activity significantly contributes to both pathological and compensatory remodeling in the heart.


Asunto(s)
Endotelio Vascular/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Isquemia Miocárdica/metabolismo , Revascularización Miocárdica , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Hipoxia de la Célula , Células Cultivadas , Cruzamientos Genéticos , Endotelio Vascular/citología , Endotelio Vascular/patología , Activación Enzimática , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/genética , Isquemia Miocárdica/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/patología , Interferencia de ARN , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Sus scrofa , Factor A de Crecimiento Endotelial Vascular/agonistas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/agonistas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Physiol Rev ; 90(4): 1507-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20959622

RESUMEN

Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.


Asunto(s)
Corazón/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Miocardio/metabolismo , Animales , Humanos
3.
PLoS One ; 7(5): e36747, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22590601

RESUMEN

Kinase homology domain (KHD) phosphorylation is required for activation of guanylyl cyclase (GC)-A and -B. Phosphopeptide mapping identified multiple phosphorylation sites in GC-A and GC-B, but these approaches have difficulty identifying sites in poorly detected peptides. Here, a functional screen was conducted to identify novel sites. Conserved serines or threonines in the KHDs of phosphorylated receptor GCs were mutated to alanine and tested for reduced hormone to detergent activity ratios. Mutation of Ser-489 in GC-B to alanine but not glutamate reduced the activity ratio to 60% of wild type (WT) levels. Similar results were observed with Ser-473, the homologous site in GC-A. Receptors containing glutamates for previously identified phosphorylation sites (GC-A-6E and GC-B-6E) were activated to ~20% of WT levels but the additional glutamate substitution for S473 or S489 increased activity to near WT levels. Substrate-velocity assays indicated that GC-B-WT-S489E and GC-B-6E-S489E had lower Km values and that WT-GC-B-S489A, GC-B-6E and GC-B-6E-S489A had higher Km values than WT-GC-B. Homologous desensitization was enhanced when GC-A contained the S473E substitution, and GC-B-6E-S489E was resistant to inhibition by a calcium elevating treatment or protein kinase C activation--processes that dephosphorylate GC-B. Mass spectrometric detection of a synthetic phospho-Ser-473 containing peptide was 200-1300-fold less sensitive than other phosphorylated peptides and neither mass spectrometric nor (32)PO(4) co-migration studies detected phospho-Ser-473 or phospho-Ser-489 in cells. We conclude that Ser-473 and Ser-489 are Km-regulating phosphorylation sites that are difficult to detect using current methods.


Asunto(s)
Receptores del Factor Natriurético Atrial/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Humanos , Mutación Missense , Mapeo Peptídico/métodos , Péptidos/genética , Péptidos/metabolismo , Fosforilación/fisiología , Estructura Terciaria de Proteína/fisiología , Ratas , Receptores del Factor Natriurético Atrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA