RESUMEN
BACKGROUND: Osteoporotic vertebral compression fractures affect a large number of elderly people and cause significant issues with pain and mobility. Percutaneous vertebroplasty (PVP) and kyphoplasty (PKP) are employed to treat those who remain symptomatic, with comparable clinical outcomes. Although PVP is faster and less expensive, concerns around cement-leakage complications make PKP perceptively safer. METHODS: By means of systematic review, we sought to ascertain whether PVP did carry a higher risk of cement-leakage and associated symptomatic complications (neural compromise, pulmonary embolism and need for emergency decompression surgery). RESULTS: Our search of 138 articles returned six studies after shortlisting and manual review: three randomised-controlled trials, and three retrospective comparative studies which met our criteria and directly compared cement-leakage rates and complications between the two treatments. 532 PVPs and 493 PKPs recorded 213 (39.3%) and 143 (28.9%) leaks, respectively (p < 0.0005). Of these, no leaks resulted in any of the aforementioned leak-related complications. No meta-analysis was performed due to heterogeneity of the data. CONCLUSIONS: We therefore concluded that whilst PVP does result in more cement leaks, this does not appear to be clinically significant. Further studies would add weight to this conclusion, and cost-effectiveness should be assessed to restore confidence in PVP. LEVEL OF EVIDENCE: Level III Evidence.
Asunto(s)
Fracturas por Compresión , Cifoplastia , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Vertebroplastia , Humanos , Anciano , Cifoplastia/efectos adversos , Cifoplastia/métodos , Fracturas por Compresión/cirugía , Estudios Retrospectivos , Relevancia Clínica , Fracturas de la Columna Vertebral/cirugía , Fracturas Osteoporóticas/cirugía , Resultado del Tratamiento , Vertebroplastia/efectos adversos , Vertebroplastia/métodos , Cementos para Huesos/efectos adversosRESUMEN
PURPOSE: Children are exposed to significant radiation doses during the investigation and treatment phases of scoliosis. EOS is a new form of low-dose radiation scan which also yields great image quality. However, currently its use is discouraged in the UK due to higher costs. We aimed to quantify the additional radiation dose and cancer risk. METHODS: We retrospectively reviewed all paediatric cases who received both standing whole spine roentgenograms and EOS scans as part of their investigations for scoliosis during a six-month period. We compared the radiation doses between the two modalities and estimated the additional mean lifetime cancer risk per study. RESULTS: We identified 206 children (mean age 14.4) who met the criteria of having both scans. Dose area products (dGycm2) were converted to estimated effective doses (mSv). The total mean doses were 0.68 mSv (PA 0.49 + Lat 0.19) for plain films, and 0.13 mSv (PA 0.08 + Lat 0.04) for EOS scans (p < 0.001). Additional lifetime cancer risk of a plain film was 543% greater than EOS for both sexes (1/10727 versus 1/5827 in males, 1/34483 versus 1/6350 in females). CONCLUSION: There is approximately 5.4-fold increase in risk of cancer for both boys and girls with roentgenograms over EOS, with girls being the most impacted. This carries a significant impact when considering the need for repeat imaging on additional lifetime malignancy risk in children. In our opinion, EOS dual planar scanning is the new gold standard when X-ray of the whole spine is required. LEVEL OF EVIDENCE: III.