Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 616(7956): 280-287, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36973449

RESUMEN

Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy1 is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes2,3, excitons4-6, plasmons7, polaritons8 or phonons9. However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system4,10. Here, we show that transient absorption-the most commonly used nonlinear spectroscopy-with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers11,12 and, contrary to common assumption6,13, we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics14,15. As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics7, Auger recombination2 and exciton correlations in quantum dots5,16,17, singlet fission18, exciton interactions in two-dimensional materials19 and in molecules20,21, carrier multiplication22, multiphonon scattering9 or polariton-polariton interaction8.

3.
J Chem Phys ; 158(23)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37326161

RESUMEN

Time-resolved spectroscopy is commonly used to study diverse phenomena in chemistry, biology, and physics. Pump-probe experiments and coherent two-dimensional (2D) spectroscopy have resolved site-to-site energy transfer, visualized electronic couplings, and much more. In both techniques, the lowest-order signal, in a perturbative expansion of the polarization, is of third order in the electric field, which we call a one-quantum (1Q) signal because in 2D spectroscopy it oscillates in the coherence time with the excitation frequency. There is also a two-quantum (2Q) signal that oscillates in the coherence time at twice the fundamental frequency and is fifth order in the electric field. We demonstrate that the appearance of the 2Q signal guarantees that the 1Q signal is contaminated by non-negligible fifth-order interactions. We derive an analytical connection between an nQ signal and (2n + 1)th-order contaminations of an rQ (with r < n) signal by studying Feynman diagrams of all contributions. We demonstrate that by performing partial integrations along the excitation axis in 2D spectra, we can obtain clean rQ signals free of higher-order artifacts. We exemplify the technique using optical 2D spectroscopy on squaraine oligomers, showing clean extraction of the third-order signal. We further demonstrate the analytical connection with higher-order pump-probe spectroscopy and compare both techniques experimentally. Our approach demonstrates the full power of higher-order pump-probe and 2D spectroscopy to investigate multi-particle interactions in coupled systems.


Asunto(s)
Electrónica , Análisis Espectral , Factores de Tiempo , Transferencia de Energía
4.
Nature ; 524(7564): 204-7, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26222025

RESUMEN

For centuries, practitioners of origami ('ori', fold; 'kami', paper) and kirigami ('kiru', cut) have fashioned sheets of paper into beautiful and complex three-dimensional structures. Both techniques are scalable, and scientists and engineers are adapting them to different two-dimensional starting materials to create structures from the macro- to the microscale. Here we show that graphene is well suited for kirigami, allowing us to build robust microscale structures with tunable mechanical properties. The material parameter crucial for kirigami is the Föppl-von Kármán number γ: an indication of the ratio between in-plane stiffness and out-of-plane bending stiffness, with high numbers corresponding to membranes that more easily bend and crumple than they stretch and shear. To determine γ, we measure the bending stiffness of graphene monolayers that are 10-100 micrometres in size and obtain a value that is thousands of times higher than the predicted atomic-scale bending stiffness. Interferometric imaging attributes this finding to ripples in the membrane that stiffen the graphene sheets considerably, to the extent that γ is comparable to that of a standard piece of paper. We may therefore apply ideas from kirigami to graphene sheets to build mechanical metamaterials such as stretchable electrodes, springs, and hinges. These results establish graphene kirigami as a simple yet powerful and customizable approach for fashioning one-atom-thick graphene sheets into resilient and movable parts with microscale dimensions.

5.
J Chem Phys ; 154(3): 034108, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33499622

RESUMEN

Nonlinear optical spectroscopies are powerful tools for probing quantum dynamics in molecular and nanoscale systems. While intuition about ultrafast spectroscopies is often built by considering impulsive optical pulses, actual experiments have finite-duration pulses, which can be important for interpreting and predicting experimental results. We present a new freely available open source method for spectroscopic modeling, called Ultrafast Ultrafast (UF2) spectroscopy, which enables computationally efficient and convenient prediction of nonlinear spectra, such as treatment of arbitrary finite duration pulse shapes. UF2 is a Fourier-based method that requires diagonalization of the Liouvillian propagator of the system density matrix. We also present a Runge-Kutta-Euler (RKE) direct propagation method. We include open system dynamics in the secular Redfield, full Redfield, and Lindblad formalisms with Markovian baths. For non-Markovian systems, the degrees of freedom corresponding to memory effects are brought into the system and treated nonperturbatively. We analyze the computational complexity of the algorithms and demonstrate numerically that, including the cost of diagonalizing the propagator, UF2 is 20-200 times faster than the direct propagation method for secular Redfield models with arbitrary Hilbert space dimension; it is similarly faster for full Redfield models at least up to system dimensions where the propagator requires more than 20 GB to store; and for Lindblad models, it is faster up to Hilbert space dimension near 100 with speedups for small systems by factors of over 500. UF2 and RKE are part of a larger open source Ultrafast Software Suite, which includes tools for automatic generation and calculation of Feynman diagrams.

6.
J Chem Phys ; 154(3): 034109, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33499626

RESUMEN

Perturbative nonlinear optical spectroscopies are powerful methods to understand the dynamics of excitonic and other condensed phase systems. Feynman diagrams have long provided the essential tool to understand and interpret experimental spectra and to organize the calculation of spectra for model systems. When optical pulses are strictly time ordered, only a small number of diagrams contribute, but in many experiments, pulse-overlap effects are important for interpreting results. When pulses overlap, the number of contributing diagrams can increase rapidly, especially with higher order spectroscopies, and human error is especially likely when attempting to write down all the diagrams. We present an automated Diagram Generator (DG) that generates all the Feynman diagrams needed to calculate any nth-order spectroscopic signal. We characterize all perturbative nonlinear spectroscopies by their associated phase-discrimination condition as well as the time intervals where pulse amplitudes are nonzero. Although the DG can be used to automate impulsive calculations, its greatest strength lies in automating finite pulse calculations where pulse overlaps are important. We consider third-order transient absorption spectroscopy and fifth-order exciton-exciton interaction 2D (EEI2D) spectroscopy, which are described by six or seven diagrams in the impulsive limit, respectively, but 16 or 240 diagrams, respectively, when pulses overlap. The DG allows users to automatically include all relevant diagrams at a relatively low computational cost, since the extra diagrams are only generated for the inter-pulse delays where they are relevant. For EEI2D spectroscopy, we show the important effects of including the overlap diagrams.

7.
J Chem Phys ; 150(21): 214105, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31176339

RESUMEN

We outline a novel numerical method, called Ultrafast Ultrafast (UF2) spectroscopy, for calculating the nth-order wavepackets required for calculating n-wave mixing signals. The method is simple to implement, and we demonstrate that it is computationally more efficient than other methods in a wide range of use cases. The resulting spectra are identical to those calculated using the standard response function formalism but with increased efficiency. The computational speed-ups of UF2 come from (a) nonperturbative and costless propagation of the system time-evolution, (b) numerical propagation only at times when perturbative optical pulses are nonzero, and (c) use of the fast Fourier transform convolution algorithm for efficient numerical propagation. The simplicity of this formalism allows us to write a simple software package that is as easy to use and understand as the Feynman diagrams that organize the understanding of n-wave mixing processes.

8.
J Phys Chem Lett ; 14(48): 10849-10855, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38032056

RESUMEN

Transient absorption (TA) spectroscopy is an invaluable tool for determining the energetics and dynamics of excited states. When pump intensities are sufficiently high, TA spectra include both the generally desired third-order response and responses that are higher in order in the field amplitudes. Recent work demonstrated that pump-intensity-dependent TA measurements allow separating the orders of response, but the information content in those higher orders has not been described. We give a general framework for understanding high-order TA spectra. We extend to higher order the fundamental processes of standard TA: ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA). Each order introduces two new processes: SE and ESA from previously inaccessible highly excited states and negations of lower-order processes. We show the new spectral and dynamical information at each order and show how the relative signs of the signals in different orders can be used to identify which processes dominate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA