Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biol Chem ; 400(10): 1277-1288, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31004560

RESUMEN

To elucidate the structures and dynamics of membrane proteins, highly advanced biophysical methods have been developed that often require significant resources, both for sample preparation and experimental analyses. For very complex systems, such as membrane transporters, ion channels or G-protein coupled receptors (GPCRs), the incorporation of a single reporter at a select site can significantly simplify the observables and the measurement/analysis requirements. Here we present examples using 19F nuclear magnetic resonance (NMR) spectroscopy as a powerful, yet relatively straightforward tool to study (membrane) protein structure, dynamics and ligand interactions. We summarize methods to incorporate 19F labels into proteins and discuss the type of information that can be readily obtained for membrane proteins already from relatively simple NMR spectra with a focus on GPCRs as the membrane protein family most extensively studied by this technique. In the future, these approaches may be of particular interest also for many proteins that undergo complex functional dynamics and/or contain unstructured regions and thus are not amenable to X-ray crystallography or cryo electron microscopy (cryoEM) studies.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Flúor , Ligandos , Unión Proteica , Conformación Proteica
2.
Biochim Biophys Acta Biomembr ; 1860(4): 818-832, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29097275

RESUMEN

ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain."


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Modelos Biológicos , Simulación de Dinámica Molecular , Conformación Proteica , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Humanos , Unión Proteica
3.
Biochim Biophys Acta Biomembr ; 1859(4): 605-618, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27693344

RESUMEN

It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. Lipids on the other hand need to undergo a 180° degree turn as they translocate from one membrane leaflet to the other. Lipids and lipidated molecules are highly diverse, so there may be various ways how to achieve their flipping and flopping. Nonetheless, an increase in biophysical, biochemical and structural data is beginning to shed some light on specific aspects of lipid transport by ABC transporters. In addition, there is now abundant evidence that lipids affect ABC transporter conformation, dynamics as well as transport and ATPase activity in general. In this review, we will discuss different ways in which lipids and ABC transporters interact and how lipid translocation may be achieved with a focus on the techniques used to investigate these processes. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.


Asunto(s)
Ácidos Grasos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Transporte Biológico , Ácidos Grasos/química , Expresión Génica , Humanos , Modelos Moleculares , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato
4.
Biomol NMR Assign ; 16(1): 81-86, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34988902

RESUMEN

ATP binding cassette (ABC) proteins are present in all phyla of life and form one of the largest protein families. The Bacillus subtilis ABC transporter BmrA is a functional homodimer that can extrude many different harmful compounds out of the cell. Each BmrA monomer is composed of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). While the TMDs of ABC transporters are sequentially diverse, the highly conserved NBDs harbor distinctive conserved motifs that enable nucleotide binding and hydrolysis, interdomain communication and that mark a protein as a member of the ABC superfamily. In the catalytic cycle of an ABC transporter, the NBDs function as the molecular motor that fuels substrate translocation across the membrane via the TMDs and are thus pivotal for the entire transport process. For a better understanding of the structural and dynamic consequences of nucleotide interactions within the NBD at atomic resolution, we determined the 1H, 13C and 15N backbone chemical shift assignments of the 259 amino acid wildtype BmrA-NBD in its post-hydrolytic, ADP-bound state.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Bacillus , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Hidrólisis , Resonancia Magnética Nuclear Biomolecular , Nucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA