Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072048

RESUMEN

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Mecanotransducción Celular , Miofibroblastos , Proteína de Unión al Calcio S100A4 , Animales , Ratones , Transdiferenciación Celular , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo
2.
Cell Mol Life Sci ; 78(16): 6051-6068, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34274977

RESUMEN

Two modes of motility have been reported for bi-directional kinesin-5 motors: (a) context-dependent directionality reversal, a mode in which motors undergo persistent minus-end directed motility at the single-molecule level and switch to plus-end directed motility in different assays or under different conditions, such as during MT gliding or antiparallel sliding or as a function of motor clustering; and (b) bi-directional motility, defined as movement in two directions in the same assay, without persistent unidirectional motility. Here, we examine how modulation of motor-microtubule (MT) interactions affects these two modes of motility for the bi-directional kinesin-5, Cin8. We report that the large insert in loop 8 (L8) within the motor domain of Cin8 increases the MT affinity of Cin8 in vivo and in vitro and is required for Cin8 intracellular functions. We consistently found that recombinant purified L8 directly binds MTs and L8 induces single Cin8 motors to behave according to context-dependent directionality reversal and bi-directional motility modes at intermediate ionic strength and according to a bi-directional motility mode in an MT surface-gliding assay under low motor density conditions. We propose that the largely unstructured L8 facilitates flexible anchoring of Cin8 to the MTs. This flexible anchoring enables the direct observation of bi-directional motility in motility assays. Remarkably, although L8-deleted Cin8 variants exhibit a strong minus-end directed bias at the single-molecule level, they also exhibit plus-end directed motility in an MT-gliding assay. Thus, L8-induced flexible MT anchoring is required for bi-directional motility of single Cin8 molecules but is not necessary for context-dependent directionality reversal of Cin8 in an MT-gliding assay.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Movimiento/fisiología , Saccharomyces cerevisiae/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(31): 15550-15559, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31235578

RESUMEN

The ability of glioblastoma to disperse through the brain contributes to its lethality, and blocking this behavior has been an appealing therapeutic approach. Although a number of proinvasive signaling pathways are active in glioblastoma, many are redundant, so targeting one can be overcome by activating another. However, these pathways converge on nonredundant components of the cytoskeleton, and we have shown that inhibiting one of these-the myosin II family of cytoskeletal motors-blocks glioblastoma invasion even with simultaneous activation of multiple upstream promigratory pathways. Myosin IIA and IIB are the most prevalent isoforms of myosin II in glioblastoma, and we now show that codeleting these myosins markedly impairs tumorigenesis and significantly prolongs survival in a rodent model of this disease. However, while targeting just myosin IIA also impairs tumor invasion, it surprisingly increases tumor proliferation in a manner that depends on environmental mechanics. On soft surfaces myosin IIA deletion enhances ERK1/2 activity, while on stiff surfaces it enhances the activity of NFκB, not only in glioblastoma but in triple-negative breast carcinoma and normal keratinocytes as well. We conclude myosin IIA suppresses tumorigenesis in at least two ways that are modulated by the mechanics of the tumor and its stroma. Our results also suggest that inhibiting tumor invasion can enhance tumor proliferation and that effective therapy requires targeting cellular components that drive both proliferation and invasion simultaneously.


Asunto(s)
Carcinogénesis/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/patología , Glioblastoma/genética , Glioblastoma/patología , Ratones , Proteínas de Neoplasias/genética , Miosina Tipo IIA no Muscular/genética
4.
Proc Natl Acad Sci U S A ; 115(8): E1779-E1788, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432173

RESUMEN

Numerous posttranslational modifications have been described in kinesins, but their consequences on motor mechanics are largely unknown. We investigated one of these-acetylation of lysine 146 in Eg5-by creating an acetylation mimetic lysine to glutamine substitution (K146Q). Lysine 146 is located in the α2 helix of the motor domain, where it makes an ionic bond with aspartate 91 on the neighboring α1 helix. Molecular dynamics simulations predict that disrupting this bond enhances catalytic site-neck linker coupling. We tested this using structural kinetics and single-molecule mechanics and found that the K146Q mutation increases motor performance under load and coupling of the neck linker to catalytic site. These changes convert Eg5 from a motor that dissociates from the microtubule at low load into one that is more tightly coupled and dissociation resistant-features shared by kinesin 1. These features combined with the increased propensity to stall predict that the K146Q Eg5 acetylation mimetic should act in the cell as a "brake" that slows spindle pole separation, and we have confirmed this by expressing this modified motor in mitotically active cells. Thus, our results illustrate how a posttranslational modification of a kinesin can be used to fine tune motor behavior to meet specific physiological needs.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Mitosis/fisiología , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Células HeLa , Humanos , Modelos Moleculares , Mutación , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 112(48): E6606-13, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627252

RESUMEN

Kinesins perform mechanical work to power a variety of cellular functions, from mitosis to organelle transport. Distinct functions shape distinct enzymologies, and this is illustrated by comparing kinesin-1, a highly processive transport motor that can work alone, to Eg5, a minimally processive mitotic motor that works in large ensembles. Although crystallographic models for both motors reveal similar structures for the domains involved in mechanochemical transduction--including switch-1 and the neck linker--how movement of these two domains is coordinated through the ATPase cycle remains unknown. We have addressed this issue by using a novel combination of transient kinetics and time-resolved fluorescence, which we refer to as "structural kinetics," to map the timing of structural changes in the switch-1 loop and neck linker. We find that differences between the structural kinetics of Eg5 and kinesin-1 yield insights into how these two motors adapt their enzymologies for their distinct functions.


Asunto(s)
Cinesinas/fisiología , Modelos Moleculares , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinesinas/química , Cinética , Microtúbulos/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Ovinos , Temperatura
6.
J Biol Chem ; 291(12): 6083-95, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26763235

RESUMEN

Pro-fibrotic mesenchymal cells are known to be the key effector cells of fibroproliferative disease, but the specific matrix signals and the induced cellular responses that drive the fibrogenic phenotype remain to be elucidated. The key mediators of the fibroblast fibrogenic phenotype were characterized using a novel assay system that measures fibroblast behavior in response to actual normal and fibrotic lung tissue. Using this system, we demonstrate that normal lung promotes fibroblast motility and polarization, while fibrotic lung immobilizes the fibroblast and promotes myofibroblast differentiation. These context-specific phenotypes are surprisingly both mediated by myosin II. The role of myosin II is supported by the observation of an increase in myosin phosphorylation and a change in intracellular distribution in fibroblasts on fibrotic lung, as compared with normal lung. Moreover, loss of myosin II activity has opposing effects on protrusive activity in fibroblasts on normal and fibrotic lung. Loss of myosin II also selectively inhibits myofibroblast differentiation in fibroblasts on fibrotic lung. Importantly, these findings are recapitulated by varying the matrix stiffness of polyacrylamide gels in the range of normal and fibrotic lung tissue. Comparison of the effects of myosin inhibition on lung tissue with that of polyacrylamide gels suggests that matrix fiber organization drives the fibroblast phenotype under conditions of normal/soft lung, while matrix stiffness drives the phenotype under conditions of fibrotic/stiff lung. This work defines novel roles for myosin II as a key regulatory effector molecule of the pro-fibrotic phenotype, in response to biophysical properties of the matrix.


Asunto(s)
Fibroblastos/fisiología , Miosina Tipo II/fisiología , Fibrosis Pulmonar/metabolismo , Animales , Diferenciación Celular , Línea Celular , Movimiento Celular , Polaridad Celular , Forma de la Célula , Matriz Extracelular/fisiología , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fenotipo , Fibrosis Pulmonar/patología
7.
Proc Natl Acad Sci U S A ; 111(5): 1837-42, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449904

RESUMEN

Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities, but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin--the transport motor kinesin-1--is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests otherwise. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and determination of structure at subnanometer resolution, we have visualized conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. After ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drug-binding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N terminus is enzymatically active, and ATP-dependent neck-linker movement and motility are defective, although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N terminus in collaboration with the motor's structured neck-linker and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Mitosis , Modelos Moleculares , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Microtúbulos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia , Relación Estructura-Actividad
8.
Cancer ; 121(23): 4165-72, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26308485

RESUMEN

BACKGROUND: Treatment options for patients with non-small cell lung cancer (NSCLC) with brain metastases are limited. Patupilone (EPO906), a blood-brain barrier-penetrating, microtubule-targeting, cytotoxic agent, has shown clinical activity in phase 1/2 studies in patients with NSCLC. This study evaluates the efficacy, pharmacokinetics, and safety of patupilone in NSCLC brain metastases. METHODS: Adult patients with NSCLC and confirmed progressive brain metastases received patupilone intravenously at 10 mg/m(2) every 3 weeks. The primary endpoint of this multinomial 2-stage study combined early progression (EP; death or progression within 3 weeks) and progression-free survival at 9 weeks (PFS9w) to determine drug activity. RESULTS: Fifty patients with a median age of 60 years (range, 33-74 years) were enrolled; the majority were men (58%), and most had received prior therapy for brain metastases (98%). The PFS9w rate was 36%, and the EP rate was 26%. Patupilone blood pharmacokinetic analyses showed mean areas under the concentration-time curve from time zero to 504 hours for cycles 1 and 3 of 1544 and 1978 ng h/mL, respectively, and a mean steady state distribution volume of 755 L/m(2) . Grade 3/4 adverse events (AEs), regardless of their relation with the study drug, included diarrhea (24%), pulmonary embolisms (8%), convulsions (4%), and peripheral neuropathy (4%). All patients discontinued the study drug: 31 (62%) for disease progression and 13 (26%) for AEs. Twenty-five of 32 deaths were due to brain metastases. The median time to progression and the overall survival were 3.2 and 8.8 months, respectively. CONCLUSIONS: This is the first prospective study of chemotherapy for recurrent brain metastases from NSCLC. In this population, patupilone demonstrated activity in heavily treated patients.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Epotilonas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Administración Intravenosa , Adulto , Anciano , Antineoplásicos/efectos adversos , Neoplasias Encefálicas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Progresión de la Enfermedad , Esquema de Medicación , Epotilonas/efectos adversos , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/mortalidad , Estudios Prospectivos , Análisis de Supervivencia , Resultado del Tratamiento
9.
Cancer ; 121(1): 102-12, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25155924

RESUMEN

BACKGROUND: Time trends in cancer incidence rates (IR) are important to measure the changing burden of cancer on a population over time. The overall IR of cancer in the United States is declining. Although central nervous system tumors (CNST) are rare, they contribute disproportionately to mortality and morbidity. In this analysis, the authors examined trends in the incidence of the most common cancers and CNST between 2000 and 2010. METHODS: The current analysis used data from the United States Cancer Statistics publication and the Central Brain Tumor Registry of the United States. Age-adjusted IR per 100,000 population with 95% confidence intervals and the annual percent change (APC) with 95% confidence intervals were calculated for selected common cancers and CNST overall and by age, sex, race/ethnicity, selected histologies, and malignancy status. RESULTS: In adults, there were significant decreases in colon (2000-2010: APC, -3.1), breast (2000-2010: APC, -0.8), lung (2000-2010: APC, -1.1), and prostate (2000-2010: APC, -2.4) cancer as well as malignant CNST (2008-2010: APC, -3.1), but a significant increase was noted in nonmalignant CNST (2004-2010: APC, 2.7). In adolescents, there were significant increases in malignant CNST (2000-2008: APC, 1.0) and nonmalignant CNST (2004-2010: APC, 3.9). In children, there were significant increases in acute lymphocytic leukemia (2000-2010: APC, 1.0), non-Hodgkin lymphoma (2000-2010: APC, 0.6), and malignant CNST (2000-2010: APC, 0.6). CONCLUSIONS: Surveillance of IR trends is an important way to measure the changing public health and economic burden of cancer. In the current study, there were significant decreases noted in the incidence of adult cancer, whereas adolescent and childhood cancer IR were either stable or increasing.


Asunto(s)
Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias/epidemiología , Adolescente , Adulto , Anciano , Neoplasias del Sistema Nervioso Central/etnología , Niño , Preescolar , Análisis por Conglomerados , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/etnología , Programa de VERF , Factores de Tiempo , Estados Unidos/epidemiología , Estados Unidos/etnología , Adulto Joven
10.
J Biol Chem ; 288(25): 18588-98, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23658017

RESUMEN

Kinesins comprise a superfamily of molecular motors that drive a wide variety of cellular physiologies, from cytoplasmic transport to formation of the bipolar spindle in mitosis. These differing roles are reflected in corresponding polymorphisms in key kinesin structural elements. One of these is a unique loop and stem motif found in all kinesins and referred to as loop 5 (L5). This loop is longest in the mitotic kinesin Eg5 and is the target for a number of small molecule inhibitors, including ispinesib, which is being used in clinical trials in patients with cancer. In this study, we have used x-ray crystallography to identify a new structure of an Eg5-ispinesib complex and have combined this with transient state kinetics to identify a plausible sequence of conformational changes that occur in response to ispinesib binding. Our results demonstrate that ispinesib-induced structural changes in L5 from Eg5 lead to subsequent changes in the conformation of the switch II loop and helix and in the neck linker. We conclude that L5 in Eg5 simultaneously regulates the structure of both the ATP binding site and the motor's mechanical elements that generate force.


Asunto(s)
Benzamidas/química , Cinesinas/química , Estructura Terciaria de Proteína , Quinazolinas/química , Algoritmos , Benzamidas/metabolismo , Benzamidas/farmacología , Sitios de Unión , Biocatálisis/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Cinética , Mitosis , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica/efectos de los fármacos , Estructura Secundaria de Proteína , Quinazolinas/metabolismo , Quinazolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA