Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146247

RESUMEN

This paper discusses an active droplet generation system, and the presented droplet generator successfully performs droplet generation using two fluid phases: continuous phase fluid and dispersed phase fluid. The performance of an active droplet generation system is analysed based on the droplet morphology using vision sensing and digital image processing. The proposed system in the study includes a droplet generator, camera module with image pre-processing and identification algorithm, and controller and control algorithm with a workstation computer. The overall system is able to control, sense, and analyse the generation of droplets. The main controller consists of a microcontroller, motor controller, voltage regulator, and power supply. Among the morphological features of droplets, the diameter is extracted from the images to observe the system performance. The MATLAB-based image processing algorithm consists of image acquisition, image enhancement, droplet identification, feature extraction, and analysis. RGB band filtering, thresholding, and opening are used in image pre-processing. After the image enhancement, droplet identification is performed by tracing the boundary of the droplets. The average droplet diameter varied from ~3.05 mm to ~4.04 mm in the experiments, and the average droplet diameter decrement presented a relationship of a second-order polynomial with the droplet generation time.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica , Algoritmos
2.
Micromachines (Basel) ; 15(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064408

RESUMEN

Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.

3.
Lab Chip ; 24(8): 2146-2175, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38507292

RESUMEN

Flexible and stretchable microdevices incorporate highly deformable structures, facilitating precise functionality at the micro- and millimetre scale. Flexible microdevices have showcased extensive utility in the fields of biomedicine, microfluidics, and soft robotics. Actuation plays a critical role in transforming energy between different forms, ensuring the effective operation of devices. However, when it comes to actuating flexible microdevices at the small millimetre or even microscale, translating actuation mechanisms from conventional rigid large-scale devices is not straightforward. The recent development of actuation mechanisms leverages the benefits of device flexibility, particularly in transforming conventional actuation concepts into more efficient approaches for flexible devices. Despite many reviews on soft robotics, flexible electronics, and flexible microfluidics, a specific and systematic review of the actuation mechanisms for flexible and stretchable microdevices is still lacking. Therefore, the present review aims to address this gap by providing a comprehensive overview of state-of-the-art actuation mechanisms for flexible and stretchable microdevices. We elaborate on the different actuation mechanisms based on fluid pressure, electric, magnetic, mechanical, and chemical sources, thoroughly examining and comparing the structure designs, characteristics, performance, advantages, and drawbacks of these diverse actuation mechanisms. Furthermore, the review explores the pivotal role of materials and fabrication techniques in the development of flexible and stretchable microdevices. Finally, we summarise the applications of these devices in biomedicine and soft robotics and provide perspectives on current and future research.

4.
Micromachines (Basel) ; 13(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422416

RESUMEN

Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA