Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(1): 100825, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34029594

RESUMEN

Normal contractile function of the heart depends on a constant and reliable production of ATP by cardiomyocytes. Dysregulation of cardiac energy metabolism can result in immature heart development and disrupt the ability of the adult myocardium to adapt to stress, potentially leading to heart failure. Further, restoration of abnormal mitochondrial function can have beneficial effects on cardiac dysfunction. Previously, we identified a novel protein termed Perm1 (PGC-1 and estrogen-related receptor (ERR)-induced regulator, muscle 1) that is enriched in skeletal and cardiac-muscle mitochondria and transcriptionally regulated by PGC-1 (peroxisome proliferator-activated receptor gamma coactivator 1) and ERR. The role of Perm1 in the heart is poorly understood and is studied here. We utilized cell culture, mouse models, and human tissue, to study its expression and transcriptional control, as well as its role in transcription of other factors. Critically, we tested Perm1's role in cardiomyocyte mitochondrial function and its ability to protect myocytes from stress-induced damage. Our studies show that Perm1 expression increases throughout mouse cardiogenesis, demonstrate that Perm1 interacts with PGC-1α and enhances activation of PGC-1 and ERR, increases mitochondrial DNA copy number, and augments oxidative capacity in cultured neonatal mouse cardiomyocytes. Moreover, we found that Perm1 reduced cellular damage produced as a result of hypoxia and reoxygenation-induced stress and mitigated cell death of cardiomyocytes. Taken together, our results show that Perm1 promotes mitochondrial biogenesis in mouse cardiomyocytes. Future studies can assess the potential of Perm1 to be used as a novel therapeutic to restore cardiac dysfunction induced by ischemic injury.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Biogénesis de Organelos , Oxígeno/metabolismo , Animales , Hipoxia de la Célula , ADN Mitocondrial/genética , Regulación hacia Abajo/genética , Corazón/embriología , Insuficiencia Cardíaca/genética , Ventrículos Cardíacos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Proteínas Musculares/genética , Oxidación-Reducción , Fosforilación Oxidativa , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Receptor Relacionado con Estrógeno ERRalfa
2.
Circ Res ; 127(2): 284-297, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32345129

RESUMEN

RATIONALE: ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE: To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS: We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS: ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.


Asunto(s)
Bloqueo Atrioventricular/metabolismo , Nodo Atrioventricular/metabolismo , Función Ventricular , Proteína de la Zonula Occludens-1/metabolismo , Animales , Bloqueo Atrioventricular/fisiopatología , Nodo Atrioventricular/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Conexinas/genética , Conexinas/metabolismo , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Vinculina/genética , Vinculina/metabolismo , Proteína de la Zonula Occludens-1/genética , alfa Catenina/genética , alfa Catenina/metabolismo
3.
Hippocampus ; 31(9): 1039-1047, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34101292

RESUMEN

The hippocampus is known to be involved in source memory across a wide variety of stimuli and source types. Thus, source memory activity in the hippocampus is thought to be domain-general such that different types of source information are similarly processed in the hippocampus. However, there is some evidence of domain-specificity for spatial and temporal source information. The current fMRI study aimed to determine whether patterns of activity in the hippocampus differed for two types of visual source information: spatial location and background color. Participants completed three runs of a spatial memory task and three runs of a color memory task. During the study phase, 32 line drawings of common objects and animals were presented to either the left or right of fixation for the spatial memory task or on either a red or green background for the color memory task. During the test phase of both tasks, 48 object word labels were presented in the center of the screen and participants classified the corresponding item as old and previously on the "left"/on a "green" background, old and previously on the "right"/on a "red" background, or "new." Two analysis methods were employed to assess whether hippocampal activity differed between the two source types: a general linear model analysis and a classification-based searchlight multivoxel pattern analysis (MVPA). The searchlight MVPA revealed that activity associated with spatial memory and color memory could be classified with above-chance accuracy in a region of the right anterior hippocampus, and a follow-up analysis revealed that there was a significant effect of memory accuracy. These results indicate that different types of source memory are represented by distinct patterns of activity in the hippocampus.


Asunto(s)
Mapeo Encefálico , Memoria Espacial , Animales , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Lóbulo Temporal
4.
Cogn Affect Behav Neurosci ; 20(4): 698-716, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32430900

RESUMEN

Rumination occurs when an individual becomes mentally stuck and cannot redirect attention away from an unwanted thought demonstrating cognitive inflexibility. Cognitive flexibility is important for various cognitive functions, including episodic memory. Trait rumination is a partial mediator in the relationship between depression and overgeneral episodic memory, suggesting that rumination may negatively influence memory for contextual details. Oscillations in the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are crucial for various cognitive functions (e.g., attention control and episodic memory) and may help to explain the relationship between trait rumination and memory for contextual details. Our study uses EEG recorded during a source memory task to assess how alpha and beta oscillations during memory for contextual details may change as a function of trait rumination, anxiety, and depression level (n = 43). The source memory task instructs participants to remember objects and their associated contextual details. Memory for contextual details is lessened for participants higher in trait rumination paired with higher trait anxiety. Oscillations were analyzed in posterior parietal/occipital regions. During encoding, an interaction of nonclinical depression level and rumination predicts higher alpha power for items that were later not successfully remembered. During test, depression and rumination interact and predict higher alpha power for both successful and unsuccessful memory. These results suggest that trait anxiety, depression, and rumination impact accuracy and alpha oscillatory dynamics during contextual memory via changes in attention control.


Asunto(s)
Ritmo alfa/fisiología , Ansiedad/fisiopatología , Ritmo beta/fisiología , Memoria Episódica , Personalidad/fisiología , Rumiación Cognitiva/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
5.
Proc Natl Acad Sci U S A ; 114(30): E6250-E6259, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28698364

RESUMEN

Continuous contraction-relaxation cycles of the heart require strong and stable connections of cardiac myocytes (CMs) with the extracellular matrix (ECM) to preserve sarcolemmal integrity. CM attachment to the ECM is mediated by integrin complexes localized at the muscle adhesion sites termed costameres. The ubiquitously expressed cytoskeletal protein talin (Tln) is a component of muscle costameres that links integrins ultimately to the sarcomere. There are two talin genes, Tln1 and Tln2. Here, we tested the function of these two Tln forms in myocardium where Tln2 is the dominant isoform in postnatal CMs. Surprisingly, global deletion of Tln2 in mice caused no structural or functional changes in heart, presumably because CM Tln1 became up-regulated. Tln2 loss increased integrin activation, although levels of the muscle-specific ß1D-integrin isoform were reduced by 50%. With this result, we produced mice that had simultaneous loss of both CM Tln1 and Tln2 and found that cardiac dysfunction occurred by 4 wk with 100% mortality by 6 mo. ß1D integrin and other costameric proteins were lost from the CMs, and membrane integrity was compromised. Given that integrin protein reduction occurred with Tln loss, rescue of the phenotype was attempted through transgenic integrin overexpression, but this could not restore WT CM integrin levels nor improve heart function. Our results show that CM Tln2 is essential for proper ß1D-integrin expression and that Tln1 can substitute for Tln2 in preserving heart function, but that loss of all Tln forms from the heart-muscle cell leads to myocyte instability and a dilated cardiomyopathy.


Asunto(s)
Cardiomiopatía Dilatada/genética , Integrina beta1/metabolismo , Miocitos Cardíacos/metabolismo , Talina/genética , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Ratones , Miocardio/patología , Miocitos Cardíacos/fisiología , Talina/metabolismo , Talina/fisiología
6.
Circulation ; 138(22): 2530-2544, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30571348

RESUMEN

BACKGROUND: Inflammation is associated with cardiac remodeling and heart failure, but how it is initiated in response to nonischemic interventions in the absence of cell death is not known. We tested the hypothesis that activation of Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ) in cardiomyocytes (CMs) in response to pressure overload elicits inflammatory responses leading to adverse remodeling. METHODS: Mice in which CaMKIIδ was selectively deleted from CMs (cardiac-specific knockout [CKO]) and floxed control mice were subjected to transverse aortic constriction (TAC). The effects of CM-specific CaMKIIδ deletion on inflammatory gene expression, inflammasome activation, macrophage accumulation, and fibrosis were assessed by quantitative polymerase chain reaction, histochemistry, and ventricular remodeling by echocardiography. RESULTS: TAC induced increases in cardiac mRNA levels for proinflammatory chemokines and cytokines in ≤3 days, and these responses were significantly blunted when CM CaMKIIδ was deleted. Apoptotic and necrotic cell death were absent at this time. CMs isolated from TAC hearts mirrored these robust increases in gene expression, which were markedly attenuated in CKO. Priming and activation of the NOD-like receptor pyrin domain-containing protein 3 inflammasome, assessed by measuring interleukin-1ß and NOD-like receptor pyrin domain-containing protein 3 mRNA levels, caspase-1 activity, and interleukin-18 cleavage, were increased at day 3 after TAC in control hearts and in CMs isolated from these hearts. These responses were dependent on CaMKIIδ and associated with activation of Nuclear Factor-kappa B and reactive oxygen species. Accumulation of macrophages observed at days 7 to 14 after TAC was diminished in CKO and, by blocking Monocyte Chemotactic Protein-1 signaling, deletion of CM Monocyte Chemotactic Protein-1 or inhibition of inflammasome activation. Fibrosis was also attenuated by these interventions and in the CKO heart. Ventricular dilation and contractile dysfunction observed at day 42 after TAC were diminished in the CKO. Inhibition of CaMKII, Nuclear Factor-kappa B, inflammasome, or Monocyte Chemotactic Protein-1 signaling in the first 1 or 2 weeks after TAC decreased remodeling, but inhibition of CaMKII after 2 weeks did not. CONCLUSIONS: Activation of CaMKIIδ in response to pressure overload triggers inflammatory gene expression and activation of the NOD-like receptor pyrin domain-containing protein 3 inflammasome in CMs. These responses provide signals for macrophage recruitment, fibrosis, and myocardial dysfunction in the heart. Our work suggests the importance of targeting early inflammatory responses induced by CM CaMKIIδ signaling to prevent progression to heart failure.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Remodelación Ventricular , Animales , Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Femenino , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/veterinaria , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
8.
Pediatr Cardiol ; 40(7): 1401-1409, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31367953

RESUMEN

Integrin receptors enable cells to sense and respond to their chemical and physical environment. As a class of membrane receptors, they provide a dynamic, tightly regulated link between the extracellular matrix or cellular counter-receptors and intracellular cytoskeletal and signaling networks. They enable transmission of mechanical force across the plasma membrane, and particularly for cardiomyocytes, may sense the mechanical load placed on cells. Talins and Kindlins are two families of FERM-domain proteins which bind the cytoplasmic tail of integrins, recruit cytoskeletal and signaling proteins involved in mechano-transduction, and those which synergize to activate integrins, allowing the integrins to physically change and bind to extracellular ligands. In this review, we will discuss the roles of talin and kindlin, particularly as integrin activators, with a focus on cardiac myocytes.


Asunto(s)
Integrinas/genética , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Talina/genética , Animales , Corazón/fisiología , Humanos , Integrinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Talina/metabolismo
9.
Learn Mem ; 25(8): 335-346, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30012878

RESUMEN

Previous research has demonstrated that areas in the medial temporal lobe and prefrontal cortex (PFC) show increased activation during retrieval of overlapping sequences. In this study, we designed a task in which degree of overlap varied between conditions in order to parse out the contributions of hippocampal and prefrontal subregions as overlap between associations increased. In the task, participants learned sequential associations consisting of a picture frame, a face within the picture frame, and an outdoor scene. The control condition consisted of a single frame-face-scene sequence. In the low overlap condition, each frame was paired with two faces and two scenes. In the high overlap condition, each frame was paired with four faces and four scenes. In all conditions the correct scene was chosen among four possible scenes and was dependent on the frame and face that preceded the choice point. One day after training, participants were tested on the retrieval of learned sequences during fMRI scanning. Results showed that the middle and posterior hippocampus (HC) was active at times when participants acquired information that increased predictability of the correct response in the overlapping sequences. Activation of dorsolateral PFC occurred at time points when the participant was able to ascertain which set of sequences the correct response belonged to. The ventrolateral PFC was active when inhibition was required, either of irrelevant stimuli or incorrect responses. These results indicate that areas of lateral PFC work in concert with the HC to disambiguate between overlapping sequences and that sequence predictability is key to when specific brain regions become active.


Asunto(s)
Anticipación Psicológica/fisiología , Aprendizaje por Asociación/fisiología , Mapeo Encefálico/métodos , Hipocampo/fisiología , Inhibición Psicológica , Recuerdo Mental/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Prefrontal/fisiología , Adolescente , Adulto , Reconocimiento Facial/fisiología , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Corteza Prefrontal/diagnóstico por imagen , Adulto Joven
10.
Physiol Genomics ; 50(9): 746-757, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29958080

RESUMEN

Immobilization, bed rest, or denervation leads to muscle disuse and subsequent skeletal muscle atrophy. Muscle atrophy can also occur as a component of various chronic diseases such as cancer, AIDS, sepsis, diabetes, and chronic heart failure or as a direct result of genetic muscle disorders. In addition to this atrophic loss of muscle mass, metabolic deregulation of muscle also occurs. In contrast, physical exercise plays a beneficial role in counteracting disuse-induced atrophy by increasing muscle mass and strength. Along with this, exercise can also reduce mitochondrial dysfunction and metabolic deregulation. Still, while exercise causes valuable metabolic and functional adaptations in skeletal muscle, the mechanisms and effectors that lead to these changes such as increased mitochondria content or enhanced protein synthesis are not fully understood. Therefore, mechanistic insights may ultimately provide novel ways to treat disuse induced atrophy and metabolic deregulation. Mass spectrometry (MS)-based proteomics offers enormous promise for investigating the molecular mechanisms underlying disuse and exercise-induced changes in skeletal muscle. This review will focus on initial findings uncovered by using proteomics approaches with human skeletal muscle specimens and discuss their potential for the future study.


Asunto(s)
Ejercicio Físico , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología , Proteómica/métodos , Humanos , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional
11.
Kidney Int ; 93(3): 643-655, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29241625

RESUMEN

Cell-matrix interactions and podocyte intercellular junctions are key for maintaining the glomerular filtration barrier. Vinculin, a cytoplasmic protein, couples actin filaments to integrin-mediated cell-matrix adhesions and to cadherin-based intercellular junctions. Here, we examined the role of vinculin in podocytes by the generation of a podocyte-specific knockout mouse. Mice lacking podocyte vinculin had increased albuminuria and foot process effacement following injury in vivo. Analysis of primary podocytes isolated from the mutant mice revealed defects in cell protrusions, altered focal adhesion size and signaling, as well as impaired cell migration. Furthermore, we found a marked mislocalization of the intercellular junction protein zonula occludens-1. In kidney sections from patients with focal segmental glomerulosclerosis, minimal change disease and membranous nephropathy, we observed dramatic differences in the expression levels and localization of vinculin. Thus, our results suggest that vinculin is necessary to maintain the integrity of the glomerular filtration barrier by modulating podocyte foot processes and stabilizing intercellular junctions.


Asunto(s)
Glomerulonefritis Membranosa/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Nefrosis Lipoidea/metabolismo , Podocitos/metabolismo , Vinculina/metabolismo , Albuminuria/genética , Albuminuria/metabolismo , Animales , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/patología , Células Cultivadas , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Adhesiones Focales/patología , Glomerulonefritis Membranosa/patología , Glomeruloesclerosis Focal y Segmentaria/patología , Mecanotransducción Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Nefrosis Lipoidea/patología , Fosforilación , Podocitos/patología , Vinculina/deficiencia , Vinculina/genética , Proteína de la Zonula Occludens-1/metabolismo
12.
Eur J Neurosci ; 48(12): 3498-3513, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30383314

RESUMEN

Mild traumatic brain injury (mTBI) can cause persistent cognitive changes. These cognitive changes may be due to changes in neural communication. Task-switching is a cognitive control operation that may be susceptible to mTBI and is associated with oscillations in theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz) ranges. This study aimed to investigate oscillatory power in response to cues indicating a task-switch after mTBI. Electroencephalogram and behavioral data were collected from 21 participants with a history of two or more concussions (mTBI) and 21 age- and gender-matched controls as they performed a task-switching paradigm. Participants differentiated whether visual stimuli were red or green, or circles or squares, depending on a cue. The cue changed every few trials with the first trial after a rule change being termed a switch trial. The mTBI group showed significantly less overall accuracy during the task. Over a posterior parietal region, the mTBI group showed more theta desynchronization than the control group from ~300 to ~600 ms post-cue during switch trials and from ~300 to 400 ms during maintain trials, along with less alpha and beta desynchronization than the control group from ~2,000 to ~2,200 ms post-cue. In a right parietal region, the mTBI group showed less alpha and beta desynchronization from ~525 to ~775 ms post-cue. However, there was no condition × group interaction in the behavior or oscillatory results. These oscillatory differences suggest a change in neural communication is present after mTBI that may relate to global changes in task performance.


Asunto(s)
Conmoción Encefálica/fisiopatología , Lesiones Encefálicas/fisiopatología , Encéfalo/fisiopatología , Señales (Psicología) , Adulto , Conducta/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Análisis y Desempeño de Tareas
14.
Cereb Cortex ; 26(5): 1965-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25662713

RESUMEN

Computational models have proposed that the entorhinal cortex (EC) is well suited for maintaining multiple items in working memory (WM). Evidence from animal recording and human neuroimaging studies show that medial temporal lobe areas including the perirhinal (PrC), EC, and CA1 hippocampal subfield may contribute to active maintenance during WM. Previous neuroimaging work also suggests CA1 may be recruited transiently when encoding novel information, and EC and CA1 may be involved in maintaining multiple items in WM. In this study, we tested the prediction that a putative WM buffer would demonstrate a load-dependent effect during a WM delay. Using high-resolution fMRI, we examined whether activity within the hippocampus (CA3/DG, CA1, and subiculum) and surrounding medial temporal cortices (PrC, EC, and parahippocampal cortex-PHC) is modulated in a load-dependent manner. We employed a delayed matching-to-sample task with novel scenes at 2 different WM loads. A contrast between high- and low-WM load showed greater activity within CA1 and subiculum during the encoding phase, and greater EC, PrC, and PHC activity during WM maintenance. These results are consistent with computational models and suggest that EC/PrC and PHC act as a WM buffer by actively maintaining novel information in a capacity-dependent manner.


Asunto(s)
Hipocampo/fisiología , Memoria a Corto Plazo/fisiología , Giro Parahipocampal/fisiología , Adulto , Mapeo Encefálico , Conducta de Elección/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Estimulación Luminosa , Lóbulo Temporal/fisiología , Adulto Joven
15.
J Mol Cell Cardiol ; 93: 162-74, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26562414

RESUMEN

Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.


Asunto(s)
Proteínas Portadoras/metabolismo , Integrinas/metabolismo , Miocardio/metabolismo , Miocardio/patología , Factores de Edad , Envejecimiento , Angiotensina II/metabolismo , Animales , Presión Sanguínea , Citocinas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Transición Epitelial-Mesenquimal , Fibrosis , Humanos , Terapia Molecular Dirigida , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Unión Proteica , Estrés Mecánico
16.
J Cell Sci ; 127(Pt 5): 1104-16, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24413171

RESUMEN

Vinculin (Vcl) links actin filaments to integrin- and cadherin-based cellular junctions. Zonula occludens-1 (ZO-1, also known as TJP1) binds connexin-43 (Cx43, also known as GJA1), cadherin and actin. Vcl and ZO-1 anchor the actin cytoskeleton to the sarcolemma. Given that loss of Vcl from cardiomyocytes causes maldistribution of Cx43 and predisposes cardiomyocyte-specific Vcl-knockout mice with preserved heart function to arrhythmia and sudden death, we hypothesized that Vcl and ZO-1 interact and that loss of this interaction destabilizes gap junctions. We found that Vcl, Cx43 and ZO-1 colocalized at the intercalated disc. Loss of cardiomyocyte Vcl caused parallel loss of ZO-1 from intercalated dics. Vcl co-immunoprecipitated Cx43 and ZO-1, and directly bound ZO-1 in yeast two-hybrid studies. Excision of the Vcl gene in neonatal mouse cardiomyocytes caused a reduction in the amount of Vcl mRNA transcript and protein expression leading to (1) decreased protein expression of Cx43, ZO-1, talin, and ß1D-integrin, (2) reduced PI3K activation, (3) increased activation of Akt, Erk1 and Erk2, and (4) cardiomyocyte necrosis. In summary, this is the first study showing a direct interaction between Vcl and ZO-1 and illustrates how Vcl plays a crucial role in stabilizing gap junctions and myocyte integrity.


Asunto(s)
Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Miocitos Cardíacos/metabolismo , Vinculina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Animales , Comunicación Celular , Membrana Celular/metabolismo , Células Cultivadas , Ratones , Ratones Noqueados , Necrosis , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas , Técnicas del Sistema de Dos Híbridos
17.
FASEB J ; 29(2): 374-84, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25366344

RESUMEN

ß1 integrins (ß1) transduce mechanical signals in many cells, including cardiac myocytes (CM). Given their close localization, as well as their role in mechanotransduction and signaling, we hypothesized that caveolin (Cav) proteins might regulate integrins in the CM. ß1 localization, complex formation, activation state, and signaling were analyzed using wild-type, Cav3 knockout, and Cav3 CM-specific transgenic heart and myocyte samples. Studies were performed under basal and mechanically loaded conditions. We found that: (1) ß1 and Cav3 colocalize in CM and coimmunoprecipitate from CM protein lysates; (2) ß1 is detected in a subset of caveolae; (3) loss of Cav3 caused reduction of ß1D integrin isoform and active ß1 integrin from the buoyant domains in the heart; (4) increased expression of myocyte Cav3 correlates with increased active ß1 integrin in adult CM; (5) in vivo pressure overload of the wild-type heart results in increased activated integrin in buoyant membrane domains along with increased association between active integrin and Cav3; and (6) Cav3-deficient myocytes have perturbed basal and stretch mediated signaling responses. Thus, Cav3 protein can modify integrin function and mechanotransduction in the CM and intact heart.


Asunto(s)
Caveolina 3/metabolismo , Integrinas/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Aorta/patología , Membrana Celular/metabolismo , Corazón/fisiología , Integrina beta1/metabolismo , Mecanotransducción Celular/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Inmunoelectrónica , Miocitos Cardíacos/citología , Estructura Terciaria de Proteína , Sarcolema/metabolismo , Transducción de Señal
18.
Circ Res ; 114(3): 572-586, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24481847

RESUMEN

Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.


Asunto(s)
Integrinas/fisiología , Miocitos Cardíacos/química , Transducción de Señal/fisiología , Animales , Antígeno CD47/química , Antígeno CD47/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Humanos , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología
19.
J Int Neuropsychol Soc ; 22(2): 205-15, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26888617

RESUMEN

OBJECTIVES: Cognitive impairment is common in Parkinson's disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. METHODS: We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. RESULTS: PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson's disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. CONCLUSIONS: Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson's disease.


Asunto(s)
Envejecimiento/patología , Mapeo Encefálico , Trastornos del Conocimiento/diagnóstico por imagen , Trastornos del Conocimiento/etiología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/complicaciones , Anciano , Estudios de Casos y Controles , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Memoria/fisiología , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Pruebas Neuropsicológicas , Trastornos Psicomotores/diagnóstico por imagen , Trastornos Psicomotores/etiología , Aprendizaje Verbal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA