Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38675703

RESUMEN

While the opioid crisis has justifiably occupied news headlines, emergency rooms are seeing many thousands of visits for another cause: cannabinoid toxicity. This is partly due to the spread of cheap and extremely potent synthetic cannabinoids that can cause serious neurological and cardiovascular complications-and deaths-every year. While an opioid overdose can be reversed by naloxone, there is no analogous treatment for cannabis toxicity. Without an antidote, doctors rely on sedatives, with their own risks, or 'waiting it out' to treat these patients. We have shown that the canonical synthetic 'designer' cannabinoids are highly potent CB1 receptor agonists and, as a result, competitive antagonists may struggle to rapidly reverse an overdose due to synthetic cannabinoids. Negative allosteric modulators (NAMs) have the potential to attenuate the effects of synthetic cannabinoids without having to directly compete for binding. We tested a group of CB1 NAMs for their ability to reverse the effects of the canonical synthetic designer cannabinoid JWH018 in vitro in a neuronal model of endogenous cannabinoid signaling and also in vivo. We tested ABD1085, RTICBM189, and PSNCBAM1 in autaptic hippocampal neurons that endogenously express a retrograde CB1-dependent circuit that inhibits neurotransmission. We found that all of these compounds blocked/reversed JWH018, though some proved more potent than others. We then tested whether these compounds could block the effects of JWH018 in vivo, using a test of nociception in mice. We found that only two of these compounds-RTICBM189 and PSNCBAM1-blocked JWH018 when applied in advance. The in vitro potency of a compound did not predict its in vivo potency. PSNCBAM1 proved to be the more potent of the compounds and also reversed the effects of JWH018 when applied afterward, a condition that more closely mimics an overdose situation. Lastly, we found that PSNCBAM1 did not elicit withdrawal after chronic JWH018 treatment. In summary, CB1 NAMs can, in principle, reverse the effects of the canonical synthetic designer cannabinoid JWH018 both in vitro and in vivo, without inducing withdrawal. These findings suggest a novel pharmacological approach to at last provide a tool to counter cannabinoid toxicity.


Asunto(s)
Cannabinoides , Receptor Cannabinoide CB1 , Animales , Humanos , Ratones , Regulación Alostérica/efectos de los fármacos , Cannabinoides/farmacología , Cannabinoides/química , Indoles/farmacología , Indoles/química , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Antagonistas de Receptores de Cannabinoides/química , Antagonistas de Receptores de Cannabinoides/farmacología
2.
Hepatology ; 74(3): 1234-1250, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33710653

RESUMEN

BACKGROUND AND AIMS: Chronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a cochaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders, but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. APPROACH AND RESULTS: We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Transcriptional enhancer factor TEF-1 (TEA) domain transcription factor 1 (Tead1) and chemokine (C-X-C motif) ligand 1 (Cxcl1) mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to down-regulation of methylation level at its 5' untranslated promoter region. The increase in Fkbp5 expression led to induction in transcription factor TEAD1 through Hippo signaling pathway. Fkbp5 can interact with yes-associated protein (YAP) upstream kinase, mammalian Ste20-like kinase 1 (MST1), affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. CONCLUSIONS: We identified an FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Quimiocina CXCL1/metabolismo , Etanol/farmacología , Vía de Señalización Hippo/genética , Hepatopatías Alcohólicas/genética , Proteínas de Unión a Tacrolimus/genética , Animales , Metilación de ADN , Perfilación de la Expresión Génica , Humanos , Inflamación , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Ratones Noqueados , Infiltración Neutrófila/genética , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Transcripción de Dominio TEA , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas Señalizadoras YAP/metabolismo
3.
Mol Psychiatry ; 26(7): 2929-2942, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32807843

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Alelos , Animales , Encéfalo/metabolismo , Edición Génica , Mutación con Pérdida de Función , Ratones , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Br J Anaesth ; 126(3): 674-683, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388140

RESUMEN

BACKGROUND: Multiple cognitive and psychiatric disorders are associated with an increased tonic inhibitory conductance that is generated by α5 subunit-containing γ-aminobutyric acid type A (α5 GABAA) receptors. Negative allosteric modulators that inhibit α5 GABAA receptors (α5-NAMs) are being developed as treatments for these disorders. The effects of α5-NAMs have been studied on recombinant GABAA receptors expressed in non-neuronal cells; however, no study has compared drug effects on the tonic conductance generated by native GABAA receptors in neurones, which was the goal of this study. METHODS: The effects of five α5-NAMs (basmisanil, Ono-160, L-655,708, α5IA, and MRK-016) on tonic current evoked by a low concentration of GABA were studied using whole-cell recordings in cultured mouse hippocampal neurones. Drug effects on current evoked by a saturating concentration of GABA and on miniature inhibitory postsynaptic currents (mIPSCs) were also examined. RESULTS: The α5-NAMs caused a concentration-dependent decrease in tonic current. The potencies varied as the inhibitory concentration for 50% inhibition (IC50) of basmisanil (127 nM) was significantly higher than those of the other compounds (0.4-0.8 nM). In contrast, the maximal efficacies of the drugs were similar (35.5-51.3% inhibition). The α5-NAMs did not modify current evoked by a saturating GABA concentration or mIPSCs. CONCLUSIONS: Basmisanil was markedly less potent than the other α5-NAMs, an unexpected result based on studies of recombinant α5 GABAA receptors. Studying the effects of α5 GABAA receptor-selective drugs on the tonic inhibitory current in neurones could inform the selection of compounds for future clinical trials.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Antagonistas de Receptores de GABA-A/farmacología , Hipocampo/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Regulación Alostérica , Animales , Células Cultivadas , Cognición/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hipocampo/metabolismo , Ratones , Neuronas/metabolismo , Técnicas de Placa-Clamp
5.
Addict Biol ; 26(1): e12872, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960544

RESUMEN

We have recently shown that levels of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide, are lower in the brains of adult cannabis users (CUs) (34 ± 11 years of age), tested during early abstinence. Here, we examine replication of the lower FAAH levels in a separate, younger cohort (23 ± 5 years of age). Eighteen healthy volunteers (HVs) and fourteen CUs underwent a positron emission tomography scan using the FAAH radioligand [11 C]CURB. Regional [11 C]CURB binding was calculated using an irreversible two-tissue compartment model with a metabolite-corrected arterial plasma input function. The FAAH C385A genetic polymorphism (rs324420) was included as a covariate. All CUs underwent a urine screen to confirm recent cannabis use and had serum cannabinoids measured. One CU screened negative for cannabinoids via serum and was removed from analysis. All HVs reported less than five lifetime cannabis exposures more than a month prior to study initiation. There was a significant effect of group (F1,26 = 4.31; P = .048) when two A/A (rs324420) HVs were removed from analysis to match the genotype of the CU group (n = 16 HVs, n = 13 CUs). Overall, [11 C]CURB λk3 was 12% lower in CU compared with HV. Exploratory correlations showed that lower brain [11 C]CURB binding was related to greater use of cannabis throughout the past year. We confirmed our previous report and extended these findings by detecting lower [11 C]CURB binding in a younger cohort with less cumulative cannabis exposure.


Asunto(s)
Amidohidrolasas/metabolismo , Uso de la Marihuana/metabolismo , Adolescente , Adulto , Encéfalo/metabolismo , Cannabis , Femenino , Humanos , Masculino , Ontario , Tomografía de Emisión de Positrones , Adulto Joven
6.
Hum Mutat ; 41(1): 291-298, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31608546

RESUMEN

Cannabinoid receptor-1 (CB1) represents a potential drug target against conditions that include obesity and substance abuse. However, drug trials targeting CB1 (encoded by the CNR1 gene) have been compromised by differences in patient response. Toward addressing the hypothesis that genetic changes within the regulatory regions controlling CNR1 expression contribute to these differences, we characterized the effects of disease-associated allelic variation within a conserved regulatory sequence (ECR1) in CNR1 intron 2 that had previously been shown to modulate cannabinoid response, alcohol intake, and anxiety-like behavior. We used primary cell analysis of reporters carrying different allelic variants of the human ECR1 and found that human-specific C-allele variants of ECR1 (ECR1(C)) drove higher levels of CNR1prom activity in primary hippocampal cells than did the ancestral T-allele and demonstrated a differential response to CB1 agonism. We further demonstrate a role for the AP-1 transcription factor in driving higher ECR1(C) activity and evidence that the ancestral t-allele variant of ECR1 interacted with higher affinity with the insulator binding factor CTCF. The cell-specific approaches used in our study represent an important step in gaining a mechanistic understanding of the roles of noncoding polymorphic variation in disease and in the increasingly important field of cannabinoid pharmacogenetics.


Asunto(s)
Cannabinoides/farmacología , Secuencia Conservada , Elementos de Facilitación Genéticos , Farmacogenética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Receptor Cannabinoide CB1/genética , Células Cultivadas , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Genes Reporteros , Genes fos , Humanos , Especificidad de Órganos/genética , Farmacogenética/métodos
7.
Exp Eye Res ; 200: 108241, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32941875

RESUMEN

The cannabinoid signaling system regulates intraocular pressure (IOP) in the mouse via a complex system that includes three receptors: CB1, GPR18 and GPR119. In each case, activating the receptor lowers IOP, but CB1 receptors are found both at sites of aqueous humor inflow and outflow. As such, knockout mice for any of these receptors would be expected to have higher-than average, or at least unchanged, intraocular pressure. The current study investigates the unexpected observation that CB1 knockout mice have lower pressure than wild type counterparts by testing various regulators of cannabinoid signaling in murine models of IOP. We now report that a CB1 antagonist has differential effects on IOP: SR141716 raises IOP in standard light cycle (SLC) but lowers IOP in reverse light cycle (RLC). This is mimicked by ABD1085, a negative allosteric modulator of CB1. CB1 inhibitors lower IOP in both normotensive and hypertensive mouse eyes. The pressure-lowering effect is absent in CB1 knockout mice. IOP rebounds after the end of treatment but shows no sign of desensitization with daily treatment for a week. Unlike the positive cannabinoid effect, antagonist effects are not sex-dependent. We propose that there are two mechanisms of action for CB1, one that lowers IOP upon activation and a second with inverse sign that lowers IOP when CB1 is antagonized. The relatively lower pressure in CB1 knockout mouse eyes suggests that this second negative regulation of IOP is dominant.


Asunto(s)
Glaucoma/metabolismo , Presión Intraocular/fisiología , Receptor Cannabinoide CB1/metabolismo , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Pharmacol Res ; 129: 475-481, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29158048

RESUMEN

The cannabinoid signaling system is found throughout the CNS and its involvement in several pathological processes makes it an attractive therapeutic target. Because orthosteric CB1 cannabinoid receptor ligands have undesirable adverse effects there has been great interest in the development of allosteric modulators - both negative (NAMs) and positive (PAMs) - of these receptors. NAMs of CB1 appeared first on the scene, followed more recently by PAMs. Because allosteric modulation can vary depending on the orthosteric ligand it is important to study their function in a system that employs endogenous cannabinoids. We have recently surveyed first generation NAMs using cultured autaptic hippocampal neurons. These neurons express depolarization induced suppression of excitation (DSE), a form of synaptic plasticity that is mediated by CB1 and 2-arachidonoyl glycerol (2-AG); they are therefore an excellent neuronal model of endogenous cannabinoid signaling in which to test CB1 modulators. In this study we find that while two related compounds, GAT211 and ZCZ011, each show PAM-like responses in autaptic hippocampal neurons, they also exhibit complex pharmacology. Notably we were able to separate the PAM- and agonist-like responses of GAT211 by examining the enantiomers of this racemic compound: GAT228 and GAT229. We find that GAT229 exhibits PAM-like behavior while GAT228 appears to directly activate the CB1 receptor. Both GAT229 and ZCZ011 represent the first PAMs that we have found to be effective in using this 2-AG utilizing neuronal model system. Because these compounds may exhibit both probe selectivity and biased signaling it will be important to test them with anandamide as well as other signaling pathways.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Neuronas/efectos de los fármacos , Receptor Cannabinoide CB1/fisiología , Tiofenos/farmacología , Regulación Alostérica , Animales , Hipocampo/citología , Hipocampo/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/fisiología , Transducción de Señal , Estereoisomerismo
9.
Gut ; 66(4): 705-715, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27679493

RESUMEN

OBJECTIVES: Chronic-plus-binge ethanol feeding activates neutrophils and exacerbates liver injury in mice. This study investigates how recent excessive drinking affects peripheral neutrophils and liver injury in alcoholics, and how miR-223, one of the most abundant microRNAs (miRNAs) in neutrophils, modulates neutrophil function and liver injury in ethanol-fed mice. DESIGNS: Three hundred alcoholics with (n=140) or without (n=160) recent excessive drinking and 45 healthy controls were enrolled. Mice were fed an ethanol diet for 10 days followed by a single binge of ethanol. RESULTS: Compared with healthy controls or alcoholics without recent drinking, alcoholics with recent excessive drinking had higher levels of circulating neutrophils, which correlated with serum levels of alanine transaminase (ALT) and aspartate transaminase (AST). miRNA array analysis revealed that alcoholics had elevated serum miR-223 levels compared with healthy controls. In chronic-plus-binge ethanol feeding mouse model, the levels of miR-223 were increased in both serum and neutrophils. Genetic deletion of the miR-223 gene exacerbated ethanol-induced hepatic injury, neutrophil infiltration, reactive oxygen species (ROS) and upregulated hepatic expression of interleukin (IL)-6 and phagocytic oxidase (phox) p47phox. Mechanistic studies revealed that miR-223 directly inhibited IL-6 expression and subsequently inhibited p47phox expression in neutrophils. Deletion of the p47phox gene ameliorated ethanol-induced liver injury and ROS production by neutrophils. Finally, miR-223 expression was downregulated, while IL-6 and p47phox expression were upregulated in peripheral blood neutrophils from alcoholics compared with healthy controls. CONCLUSIONS: miR-223 is an important regulator to block neutrophil infiltration in alcoholic liver disease and could be a novel therapeutic target for the treatment of this malady.


Asunto(s)
Alcoholismo/sangre , Consumo Excesivo de Bebidas Alcohólicas/sangre , Hepatopatías Alcohólicas/metabolismo , MicroARNs/sangre , MicroARNs/genética , Neutrófilos/metabolismo , Adulto , Alanina Transaminasa/sangre , Alcoholismo/complicaciones , Animales , Aspartato Aminotransferasas/sangre , Bilirrubina/sangre , Consumo Excesivo de Bebidas Alcohólicas/complicaciones , Estudios de Casos y Controles , Depresores del Sistema Nervioso Central/administración & dosificación , Regulación hacia Abajo , Etanol/administración & dosificación , Femenino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba , Adulto Joven
10.
J Hepatol ; 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28870670

RESUMEN

BACKGROUND & AIM: Alcohol consumption increases intestinal permeability and causes damage to hepatocytes, leading to the release of pathogen- and damage-associated molecular pattern molecules (PAMPs and DAMPs), stimulating hepatic macrophages and activating NF-κB. The resultant inflammation exacerbates alcoholic liver disease (ALD). However, much less is known about the mechanisms attenuating inflammation and preventing disease progression in most heavy drinkers. Interleukin (IL)-33 is a DAMP (alarmin) released from dead cells that acts through its receptor, IL-1 receptor like 1 (ST2). ST2 signaling has been reported to either stimulate or inhibit NF-κB activation. The role of IL-33/ST2 in ALD has not been studied. METHODS: Serum levels of IL-33 and its decoy receptor, soluble ST2 (sST2) were measured in ALD patients. Alcohol-induced liver injury, inflammation and hepatic macrophage activation were compared between wild-type, IL-33-/- and ST2-/- mice in several models. RESULTS: Elevation of serum IL-33 and sST2 were only observed in patients with severe decompensated ALD. Consistently, in mice with mild ALD without significant cell death and IL-33 release, IL-33 deletion did not affect alcohol-induced liver damage. However, ST2-deletion exacerbated ALD, through enhancing NF-κB activation in liver macrophages. In contrast, when extracellular IL-33 was markedly elevated, liver injury and inflammation were attenuated in both IL-33-/- and ST2-/- mice compared to wild-type mice. CONCLUSION: Our data revealed a dichotomous role of IL-33/ST2 signaling during ALD development. At early and mild stages, ST2 restrains the inflammatory activation of hepatic macrophages, through inhibiting NF-κB, and plays a protective function in an IL-33-independent fashion. During severe liver injury, significant cell death and marked IL-33 release occur, which triggers IL-33/ST2 signaling and exacerbates tissue damage. LAY SUMMARY: In mild ALD, ST2 negatively regulates the inflammatory activation of hepatic macrophages, thereby protecting against alcohol-induced liver damage, whereas in the case of severe liver injury, the release of extracellular IL-33 may exacerbate tissue inflammation by triggering the canonical IL-33/ST2L signaling in hepatic macrophages.

11.
Bioorg Med Chem Lett ; 26(18): 4403-4407, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27542310

RESUMEN

Existing CB1 negative allosteric modulators (NAMs) fall into a limited range of structural classes. In spite of the theoretical potential of CB1 NAMs, published in vivo studies have generally not been able to demonstrate the expected therapeutically-relevant CB1-mediated effects. Thus, a greater range of molecular tools are required to allow definitive elucidation of the effects of CB1 allosteric modulation. In this study, we show a novel series of indole sulfonamides. Compounds 5e and 6c (ABD1075) had potencies of 4 and 3nM respectively, and showed good oral exposure and CNS penetration, making them highly versatile tools for investigating the therapeutic potential of allosteric modulation of the cannabinoid system.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Sulfonamidas/farmacología , Regulación Alostérica , Humanos
12.
Proc Natl Acad Sci U S A ; 110(13): 5193-8, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23472002

RESUMEN

G protein-coupled receptor (GPR) 55 is sensitive to certain cannabinoids, it is expressed in the brain and, in cell cultures, it triggers mobilization of intracellular Ca(2+). However, the adaptive neurobiological significance of GPR55 remains unknown. Here, we use acute hippocampal slices and combine two-photon excitation Ca(2+) imaging in presynaptic axonal boutons with optical quantal analysis in postsynaptic dendritic spines to find that GPR55 activation transiently increases release probability at individual CA3-CA1 synapses. The underlying mechanism involves Ca(2+) release from presynaptic Ca(2+) stores, whereas postsynaptic stores (activated by spot-uncaging of inositol 1,4,5-trisphosphate) remain unaffected by GPR55 agonists. These effects are abolished by genetic deletion of GPR55 or by the GPR55 antagonist cannabidiol, a constituent of Cannabis sativa. GPR55 shows colocalization with synaptic vesicle protein vesicular glutamate transporter 1 in stratum radiatum. Short-term potentiation of CA3-CA1 transmission after a short train of stimuli reveals a presynaptic, Ca(2+) store-dependent component sensitive to cannabidiol. The underlying cascade involves synthesis of phospholipids, likely in the presynaptic cell, but not the endocannabinoids 2-arachidonoylglycerol or anandamide. Our results thus unveil a signaling role for GPR55 in synaptic circuits of the brain.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Neurotransmisores/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Membranas Sinápticas/metabolismo , Transmisión Sináptica/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Calcio/metabolismo , Cannabidiol/química , Cannabidiol/farmacología , Cannabis/química , Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Ratones Noqueados , Microdisección , Terminales Presinápticos/metabolismo , Ratas , Receptores de Cannabinoides/genética , Receptores Acoplados a Proteínas G/genética , Transmisión Sináptica/efectos de los fármacos
13.
J Biol Chem ; 289(9): 5828-45, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24366865

RESUMEN

The cannabinoid 1 (CB1) allosteric modulator, 5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide) (ORG27569), has the paradoxical effect of increasing the equilibrium binding of [(3)H](-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl]cyclohexan-1-ol (CP55,940, an orthosteric agonist) while at the same time decreasing its efficacy (in G protein-mediated signaling). ORG27569 also decreases basal signaling, acting as an inverse agonist for the G protein-mediated signaling pathway. In ligand displacement assays, ORG27569 can displace the CB1 antagonist/inverse agonist, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). The goal of this work was to identify the binding site of ORG27569 at CB1. To this end, we used computation, synthesis, mutation, and functional studies to identify the ORG27569-binding site in the CB1 TMH3-6-7 region. This site is consistent with the results of K3.28(192)A, F3.36(200)A, W5.43(279)A, W6.48(356)A, and F3.25(189)A mutation studies, which revealed the ORG27569-binding site overlaps with our previously determined binding site of SR141716A but extends extracellularly. Additionally, we identified a key electrostatic interaction between the ORG27569 piperidine ring nitrogen and K3.28(192) that is important for ORG27569 to act as an inverse agonist. At this allosteric site, ORG27569 promotes an intermediate conformation of the CB1 receptor, explaining ORG27569's ability to increase equilibrium binding of CP55,940. This site also explains ORG27569's ability to antagonize the efficacy of CP55,940 in three complementary ways. 1) ORG27569 sterically blocks movements of the second extracellular loop that have been linked to receptor activation. 2) ORG27569 sterically blocks a key electrostatic interaction between the third extracellular loop residue Lys-373 and D2.63(176). 3) ORG27569 packs against TMH6, sterically hindering movements of this helix that have been shown to be important for receptor activation.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Simulación de Dinámica Molecular , Piperidinas/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Sitios de Unión , Antagonistas de Receptores de Cannabinoides/química , Células HEK293 , Humanos , Indoles/química , Piperidinas/química , Unión Proteica , Pirazoles , Receptor Cannabinoide CB1/metabolismo , Rimonabant , Transducción de Señal/genética
14.
Alcohol Clin Exp Res ; 39(3): 556-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25704570

RESUMEN

BACKGROUND: Construct interview that correctly identifies those with alcohol use disorder have limitation, especially when the subjects are motivated to minimize the magnitude of drinking behavior. Current laboratory tests to detect excessive alcohol consumption are limited by marginal sensitivity/specificity. Excessive drinking has been shown to affect several organ systems, which may be reflected in changes in quantity of plasma proteins. Our aim was to employ novel proteomic analyses to identify potential markers for excessive alcohol use. METHODS: A prospective case-control study included 49 controls and 54 excessive drinkers (discovery cohort). The serum proteomic analyses in these subjects were performed, and the results were tested in the verification cohort (40 controls and 40 excessive drinkers). RESULTS: Using the appropriate cutoff and confirmation with ELISA, we identified 4 proteins which were significantly elevated in the serum of excessive drinkers: AT-rich interactive domain-containing protein 4B (ARID4B), phosphatidylcholine-sterol acyltransferase (LCAT), hepatocyte growth factor-like protein (MST1), and ADP-ribosylation factor 6 (ARL6). The performance of the conventional markers (aspartate aminotransferase [AST], alanine aminotransferase [ALT], gamma-glutamyl transpeptidase [GGT], percentage of carbohydrate-deficient transferrin [%CDT], and mean corpuscular volume [MCV]) discriminating between excessive alcohol use and controls had an area under the curve (AUC) ranging from 0.21 (ALT) to 0.67 (MCV). The AUC of these novel proteins showed the improvement in the detection of excessive drinkers compared to conventional laboratory tests, ranging from 0.73 (for ARID4B) to 0.86 (for ARL6). CONCLUSIONS: We have identified 4 novel proteins that can discern subjects with excessive alcohol use. Further studies are needed to determine the clinical implications of these markers to detect excessive alcohol use and confirm abstinence.


Asunto(s)
Factores de Ribosilacion-ADP/sangre , Trastornos Relacionados con Alcohol/sangre , Trastornos Relacionados con Alcohol/diagnóstico , Antígenos de Neoplasias/sangre , Factor de Crecimiento de Hepatocito/sangre , Proteínas de Neoplasias/sangre , Fosfatidilcolina-Esterol O-Aciltransferasa/sangre , Proteínas Proto-Oncogénicas/sangre , Factor 6 de Ribosilación del ADP , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos
15.
Behav Pharmacol ; 26(3): 289-303, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25356730

RESUMEN

The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Conducta Alimentaria/efectos de los fármacos , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Sueño/efectos de los fármacos , Animales , Benzoxazinas/farmacología , Encéfalo/metabolismo , Ciclohexanoles/farmacología , Electroencefalografía , Masculino , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , Actividad Motora/efectos de los fármacos , Naftalenos/farmacología , Piperidinas/farmacología , Sueño REM/efectos de los fármacos , Vigilia/efectos de los fármacos
16.
Behav Pharmacol ; 25(2): 182-5, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24603340

RESUMEN

Several allosteric modulators (AMs) of the CB1 receptor have been characterized in vitro, including Org27569, which enhances CB1-specific binding of [H]CP55,940, but behaves as an insurmountable CB1-receptor antagonist in several biochemical assays. Although a growing body of research has investigated the molecular actions of this unusual AM, it is unknown whether these actions translate to the whole animal. The purpose of the present study was to determine whether Org27569 would produce effects in well-established mouse behavioral assays sensitive to CB1 orthosteric agonists and antagonists. Similar to the orthosteric CB1 antagonist/inverse agonist rimonabant, Org27569 reduced food intake; however, this anorectic effect occurred independently of the CB1 receptor. Org27569 did not elicit CB1-mediated effects alone and lacked efficacy in altering antinociceptive, cataleptic, and hypothermic actions of the orthosteric agonists anandamide, CP55,940, and Δ-tetrahydrocannabinol. Moreover, it did not alter the discriminative stimulus effects of anandamide in FAAH-deficient mice or Δ-tetrahydrocannabinol in wild-type mice in the drug discrimination paradigm. These findings question the utility of Org27569 as a 'gold standard' CB1 AM and underscore the need for the development of CB1 AMs with pharmacology that translates from the molecular level to the whole animal.


Asunto(s)
Moduladores de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Piperidinas/farmacología , Receptor Cannabinoide CB1/metabolismo , Regulación Alostérica , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Moduladores de Receptores de Cannabinoides/farmacocinética , Catalepsia/inducido químicamente , Catalepsia/tratamiento farmacológico , Catalepsia/metabolismo , Ciclohexanoles/farmacología , Dronabinol/farmacología , Evaluación de Medicamentos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Endocannabinoides/farmacología , Femenino , Hipotermia/inducido químicamente , Hipotermia/tratamiento farmacológico , Hipotermia/metabolismo , Indoles/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Piperidinas/farmacocinética , Alcamidas Poliinsaturadas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Rimonabant
17.
Ann Fam Med ; 12(4): 352-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25024244

RESUMEN

PURPOSE: The goal of this study was to develop a technology-based strategy to identify patients with undiagnosed hypertension in 23 primary care practices and integrate this innovation into a continuous quality improvement initiative in a large, integrated health system. METHODS: In phase 1, we reviewed electronic health records (EHRs) using algorithms designed to identify patients at risk for undiagnosed hypertension. We then invited each at-risk patient to complete an automated office blood pressure (AOBP) protocol. In phase 2, we instituted a quality improvement process that included regular physician feedback and office-based computer alerts to evaluate at-risk patients not screened in phase 1. Study patients were observed for 24 additional months to determine rates of diagnostic resolution. RESULTS: Of the 1,432 patients targeted for inclusion in the study, 475 completed the AOBP protocol during the 6 months of phase 1. Of the 1,033 at-risk patients who remained active during phase 2, 740 (72%) were classified by the end of the follow-up period: 361 had hypertension diagnosed, 290 had either white-coat hypertension, prehypertension, or elevated blood pressure diagnosed, and 89 had normal blood pressure. By the end of the follow-up period, 293 patients (28%) had not been classified and remained at risk for undiagnosed hypertension. CONCLUSIONS: Our technology-based innovation identified a large number of patients at risk for undiagnosed hypertension and successfully classified the majority, including many with hypertension. This innovation has been implemented as an ongoing quality improvement initiative in our medical group and continues to improve the accuracy of diagnosis of hypertension among primary care patients.


Asunto(s)
Hipertensión/diagnóstico , Atención Primaria de Salud/métodos , Mejoramiento de la Calidad , Adolescente , Adulto , Anciano , Algoritmos , Presión Sanguínea/fisiología , Determinación de la Presión Sanguínea/métodos , Registros Electrónicos de Salud , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Artículo en Inglés | MEDLINE | ID: mdl-38923954

RESUMEN

Background: Cannabis is one of the world's most commonly used substances; however, many questions remain unanswered as to how cannabis impacts the body. Recently, there has been a resurgence of research into the effects of plant-derived cannabinoids on mitochondrial health. In particular, a number of studies implicate mitochondrial-Δ9-tetrahydrocannabinol (Δ9-THC) interactions with altered memory, metabolism, and catalepsy in mice. Although the research in this field is expanding rapidly, there is little known about the effects of cannabis on mitochondria health in human subjects either in acute or chronic term use. Methods: Blood samples were obtained from a double-blind, placebo-controlled, parallel-group randomized clinical trial in which adults who regularly use cannabis (1-4 days/week) aged 19-25 years were randomized 2:1 to receive either an active (12.5% Δ9-THC) cigarette or placebo (<0.01% Δ9-THC) cigarette containing 750 mg of cannabis before driving simulator testing. DNA was extracted from whole blood using commercial spin columns, followed by measurement of mt-ND1, mt-ND4, and ß2M using quantitative polymerase chain reaction. One-way repeated measures analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test was used to observe changes in mitochondrial DNA (mtDNA) copy number over time. A two-tailed Pearsons R test was used to assess correlations between mtDNA copy number and cannabinoid levels (Δ9-THC and metabolites) in blood. Results: We found that exposure to active cannabis containing Δ9-THC, as opposed to placebo, was associated with an acute reduction in mitochondrial DNA copy number in whole blood at 15 min and 1 h after smoking. The observed decrease in mtDNA copy number negatively correlated with blood concentrations of 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), the two primary metabolites of Δ9-THC, but not Δ9-THC itself. Further, the negative correlation between 11-OH THC and THC-COOH concentrations and mtDNA copy number was found in only a subgroup of participants who use cannabis infrequently, suggesting a tolerance effect. Conclusions: These results illuminate mitochondrial alterations attributed to Δ9-THC consumption, which may be mediated by metabolites. These results appear to suggest stronger effects in individuals who consume cannabis less frequently, suggesting some form of tolerance to the effects of Δ9-THC and its metabolites on mtDNA content in whole blood. Keywords: Mitochondria; mtDNA; cannabis; THC; THC metabolites; blood; THC-COOH; 11-OH-THC.

19.
Br J Pharmacol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831545

RESUMEN

BACKGROUND AND PURPOSE: Activation of CB1 by exogenous agonists causes adverse effects in vivo. Positive allosteric modulation may offer improved therapeutic potential and a reduced on-target adverse effect profile compared with orthosteric agonists, due to reduced desensitisation/tolerance, but this has not been directly tested. This study investigated the ability of PAMs/ago-PAMs to induce receptor regulation pathways, including desensitisation and receptor internalisation. EXPERIMENTAL APPROACH: Bioluminescence resonance energy transfer (BRET) assays in HEK293 cells were performed to investigate G protein dissociation, ERK1/2 phosphorylation and ß-arrestin 2 translocation, while immunocytochemistry was performed to measure internalisation of CB1 in response to the PAMs ZCZ011, GAT229 and ABD1236 alone and in combination with the orthosteric agonists AEA, 2-AG, and AMB-FUBINACA. KEY RESULTS: ZCZ011, GAT229 and ABD1236 were allosteric agonists in all pathways tested. The ago-PAM ZCZ011 induced a biphasic ERK1/2 phosphorylation time course compared to transient activation by orthosteric agonists. In combination with 2-AG but not AEA or AMB-FUBINACA, ZCZ011 and ABD1236 caused the transient peak of ERK1/2 phosphorylation to become sustained. All PAMs increased the potency and efficacy of AEA-induced signalling in all pathways tested; however, no notable potentiation of 2-AG or AMB-FUBINACA was observed. CONCLUSION AND IMPLICATIONS: Ago-PAMs can potentiate endocannabinoid CB1 agonism by AEA to a larger extent compared with 2-AG. However, all compounds were found to be allosteric agonists and induce activation of CB1 in the absence of endocannabinoid, including ß-arrestin 2 recruitment and internalisation. Thus, the spatiotemporal signalling of endogenous cannabinoids will not be retained in vivo.

20.
Mol Pharmacol ; 83(2): 322-38, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23160940

RESUMEN

We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and ß-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and ß-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Animales , Arrestinas/metabolismo , Benzoxazinas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colforsina/farmacología , Cricetinae , AMP Cíclico/metabolismo , Ciclohexanoles/farmacología , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Células HEK293 , Humanos , Indoles/farmacología , Cinética , Ligandos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Morfolinas/farmacología , Naftalenos/farmacología , Fosforilación/efectos de los fármacos , Piperidinas/farmacología , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA