Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Immunol ; 212(1): 24-34, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37975667

RESUMEN

Influenza viruses infect 5-30% of the world's population annually, resulting in millions of incidents of hospitalization and thousands of mortalities worldwide every year. Although annual vaccination has significantly reduced hospitalization rates in vulnerable populations, the current vaccines are estimated to offer a wide range of protection from 10 to 60% annually. Such incomplete immunity may be related to both poor antigenic coverage of circulating strains, as well as to the insufficient induction of protective immunity. Beyond the role of hemagglutinin (HA) and neuraminidase (NA), vaccine-induced Abs have the capacity to induce a broader array of Ab effector functions, including Ab-dependent cellular cytotoxicity, that has been implicated in universal immunity against influenza viruses. However, whether different vaccine platforms can induce functional humoral immunity in a distinct manner remains incompletely defined. In this study, we compared vaccine-induced humoral immune responses induced by two seasonal influenza vaccines in Homo sapiens, the i.m. inactivated vaccine (IIV/Fluzone) and the live attenuated mucosal vaccine (LAIV/FluMist). Whereas the inactivated influenza vaccine induced superior Ab titers and FcγR binding capacity to diverse HA and NA Ags, the live attenuated influenza mucosal vaccine induced a more robust functional humoral immune response against both the HA and NA domains. Multivariate Ab analysis further highlighted the significantly different overall functional humoral immune profiles induced by the two vaccines, marked by differences in IgG titers, FcR binding, and both NK cell-recruiting and opsonophagocytic Ab functions. These results highlight the striking differences in Ab Fc-effector profiles induced systemically by two distinct influenza vaccine platforms.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Humanos , Inmunidad Humoral , Estaciones del Año , Vacunación , Hemaglutininas , Vacunas Atenuadas , Vacunas de Productos Inactivados , Anticuerpos Antivirales
2.
J Virol ; 98(8): e0078124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39078191

RESUMEN

Influenza remains a worldwide public health threat. Although seasonal influenza vaccines are currently the best means of preventing severe disease, the standard-of-care vaccines require frequent updating due to antigenic drift and can have low efficacy, particularly in vulnerable populations. Here, we demonstrate that a single administration of a recombinant adenovirus-associated virus (rAAV) vector expressing a computationally optimized broadly reactive antigen (COBRA)-derived influenza H1 hemagglutinin (HA) induces strongly neutralizing and broadly protective antibodies in naïve mice and ferrets with pre-existing influenza immunity. Following a lethal viral challenge, the rAAV-COBRA vaccine allowed for significantly reduced viral loads in the upper and lower respiratory tracts and complete protection from morbidity and mortality that lasted for at least 5 months post-vaccination. We observed no signs of antibody waning during this study. CpG motif enrichment of the antigen can act as an internal adjuvant to further enhance the immune responses to allow for lower vaccine dosages with the induction of unique interferon-producing CD4+ and CD8+ T cells specific to HA head and stem peptide sequences. Our studies highlight the utility of rAAV as an effective platform to improve seasonal influenza vaccines. IMPORTANCE: Developing an improved seasonal influenza vaccine remains an ambitious goal of researchers and clinicians alike. With influenza routinely causing severe epidemics with the potential to rise to pandemic levels, it is critical to create an effective, broadly protective, and durable vaccine to improve public health worldwide. As a potential solution, we created a rAAV viral vector expressing a COBRA-optimized influenza hemagglutinin antigen with modestly enriched CpG motifs to evoke a robust and long-lasting immune response after a single intramuscular dose without needing boosts or adjuvants. Importantly, the rAAV vaccine boosted antibody breadth to future strains in ferrets with pre-existing influenza immunity. Together, our data support further investigation into the utility of viral vectors as a potential avenue to improve our seasonal influenza vaccines.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Antivirales , Dependovirus , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Ratones , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Dependovirus/genética , Dependovirus/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Femenino , Vectores Genéticos , Ratones Endogámicos BALB C , Vacunación , Gripe Humana/prevención & control , Gripe Humana/inmunología , Linfocitos T CD8-positivos/inmunología
6.
Front Immunol ; 15: 1334670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533508

RESUMEN

Background: The implementation of mRNA vaccines against COVID-19 has successfully validated the safety and efficacy of the platform, while at the same time revealing the potential for their applications against other infectious diseases. Traditional seasonal influenza vaccines often induce strain specific antibody responses that offer limited protection against antigenically drifted viruses, leading to reduced vaccine efficacy. Modern advances in viral surveillance and sequencing have led to the development of in-silico methodologies for generating computationally optimized broadly reactive antigens (COBRAs) to improve seasonal influenza vaccines. Methods: In this study, immunologically naïve mice were intramuscularly vaccinated with mRNA encoding H1 and H3 COBRA hemagglutinins (HA) or wild-type (WT) influenza HAs encapsulated in lipid nanoparticles (LNPs). Results: Mice vaccinated with H1 and H3 COBRA HA-encoding mRNA vaccines generated robust neutralizing serum antibody responses against more antigenically distinct contemporary and future drifted H1N1 and H3N2 influenza strains than those vaccinated with WT H1 and H3 HA-encoding mRNA vaccines. The H1 and H3 COBRA HA-encoding mRNA vaccines also prevented influenza illness, including severe disease in the mouse model against H1N1 and H3N2 viruses. Conclusions: This study highlights the potential benefits of combining universal influenza antigen design technology with modern vaccine delivery platforms and exhibits how these vaccines can be advantageous over traditional WT vaccine antigens at eliciting superior protective antibody responses against a broader number of influenza virus isolates.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Ratones , Hemaglutininas , Subtipo H3N2 del Virus de la Influenza A , Vacunas de ARNm , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Neutralizantes
7.
Expert Rev Vaccines ; 23(1): 409-418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38509022

RESUMEN

INTRODUCTION: Vaccination is the most effective method to control the prevalence of seasonal influenza and the most widely used influenza vaccine is the inactivated influenza vaccine (IIV). Each season, the influenza vaccine must be updated to be most effective against current circulating variants. Therefore, developing a universal influenza vaccine (UIV) that can elicit both broad and durable protection is of the utmost importance. AREA COVERED: This review summarizes and compares the available influenza vaccines in the market and inactivation methods used for manufacturing IIVs. Then, we discuss the latest progress of the UIV development in the IIV format and the challenges to address for moving these vaccine candidates to clinical trials and commercialization. The literature search was based on the Centers for Disease Control and Prevention (CDC) and the PubMed databases. EXPERT OPINION: The unmet need for UIV is the primary aim of developing the next generation of influenza vaccines. The IIV has high antigenicity and a refined manufacturing process compared to most other formats. Developing the UIV in IIV format is a promising direction with advanced biomolecular technologies and next-generation adjuvant. It also inspires the development of universal vaccines for other infectious diseases.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Vacunas de Productos Inactivados , Vacunación , Estaciones del Año , Anticuerpos Antivirales
8.
Sci Rep ; 14(1): 1440, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228649

RESUMEN

Each year, new influenza virus vaccine formulations are generated to keep up with continuously circulating and mutating viral variants. A next-generation influenza virus vaccine would provide long-lasting, broadly-reactive immune protection against current and future influenza virus strains for both seasonal and pre-pandemic viruses. Next generation immunogens were designed using computationally optimized broadly reactive antigen (COBRA) methodology to protect against a broad range of strains over numerous seasons. Novel HA and NA amino acid sequences were derived from multilayered consensus sequence alignment for multiple subtypes of influenza. This multivalent formulation was hypothesized to elicit broadly protective immune responses against both seasonal and pre-pandemic influenza viruses. Mice were vaccinated with multivalent mixtures of HA and NA (H1, H2, H3, H5, H7, N1, N2) proteins. Multivalent COBRA vaccinations elicited antibodies that recognized a broad panel of strains and vaccinated mice were protected against viruses representing multiple subtypes. This is a promising candidate for a universal influenza vaccine that elicits protective immune responses against seasonal and pre-pandemic strains over multiple seasons.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Estaciones del Año , Pandemias , Anticuerpos Antivirales , Antígenos Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza
9.
Expert Rev Vaccines ; 23(1): 474-484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38632930

RESUMEN

INTRODUCTION: Anti-neuraminidase (NA) immunity correlates with the protection against influenza virus infection in both human and animal models. The aim of this review is to better understand the mechanism of anti-NA immunity, and also to evaluate the approaches on developing NA-based influenza vaccines or enhancing immune responses against NA for current influenza vaccines. AREAS COVERED: In this review, the structure of influenza neuraminidase, the contribution of anti-NA immunity to protection, as well as the efforts and challenges of targeting the immune responses to NA were discussed. We also listed some of the newly discovered anti-NA monoclonal antibodies and discussed their contribution in therapeutic as well as the antigen design of a broadly protective NA vaccine. EXPERT OPINION: Targeting the immune response to both HA and NA may be critical for achieving the optimal protection since there are different mechanisms of HA and NA elicited protective immunity. Monoclonal antibodies (mAbs) that target the conserved protective lateral face or catalytic sites are effective therapeutics. The epitope discovery using monoclonal antibodies may benefit NA-based vaccine elicited broadly reactive antibody responses. Therefore, the potential for a vaccine that elicits cross-reactive antibodies against neuraminidase is a high priority for next-generation influenza vaccines.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Vacunas contra la Influenza , Gripe Humana , Neuraminidasa , Humanos , Neuraminidasa/inmunología , Gripe Humana/prevención & control , Gripe Humana/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Anticuerpos Monoclonales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Desarrollo de Vacunas , Reacciones Cruzadas/inmunología , Epítopos/inmunología
10.
Virology ; 597: 110119, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850895

RESUMEN

Highly pathogenic avian influenza (HPAI) viruses remain a major threat to both the poultry industry and human public health, and these viruses continue to spread worldwide. In this study, mice were vaccinated with COBRA H2, H5, and H7 hemagglutinin (HA) and two neuraminidase (NA) proteins, N1 and N2. Vaccinated mice were fully protected against lethal challenge with H5N6 influenza virus. Sera collected after vaccination showed cross-reactive IgG antibodies against a panel of wild-type H2, H5, and H7 HA proteins, and N1 and N2 NA proteins. Mice with pre-existing immunity to H1N1 and H3N2 influenza viruses that were subsequently vaccinated with COBRA HA/NA vaccines had enhanced anti-HA stem antibodies compared to vaccinated mice without pre-existing immunity. In addition, sera collected after vaccination had hemagglutinin inhibitory activity against a panel of H2Nx, H5Nx, and H7Nx influenza viruses. These protective antibodies were maintained up for up to 4 months after vaccination.


Asunto(s)
Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Neuraminidasa , Infecciones por Orthomyxoviridae , Animales , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Neuraminidasa/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Ratones , Ratones Endogámicos BALB C , Femenino , Vacunación , Virus de la Influenza A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Reacciones Cruzadas , Humanos , Proteínas Virales/inmunología , Proteínas Virales/genética
11.
Vaccine ; 42(5): 1184-1192, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38296701

RESUMEN

SARS-CoV-2 and Influenza viruses are both highly transmissible airborne viruses and causing high morbidity and mortality. Co-infection of these two viruses results in severe disease that have been observed when influenza and SARS-CoV-2 viruses cocirculated in the past three years, and vaccination is still the effective way to prevent these two diseases. However, influenza and COVID-19 vaccines are designed and manufactured in different platforms, all the individuals will need to get two shots in order to prevent those two severe respiratory diseases. Therefore, it is urgent to develop a Flu-COVID combo vaccine to provide an efficient way for receiving immunization against those two diseases. In this study, we developed a flu-COVID combo vaccine that includes both influenza virus haemagglutinin (HA) proteins and SARS-CoV-2 Spike (S) protein which formulated with AddaVax. K18-hACE-2 transgenic mice were intramuscularly vaccinated with either combo vaccine or mono Flu (HA) or COVID (S) recombinant protein vaccine in a prime-boost-boost regimen, and then were challenged with lethal doses of influenza virus or SARS-CoV-2 to evaluate vaccine efficacy. The results showed that Flu-COVID combo vaccine protected mice from both Influenza and SARS-CoV-2 challenge by preventing body weight loss and clinical signs progression. The protective immune responses elicited by Flu-COVID combo vaccine were equivalent to those elicited by mono flu or COVID recombinant protein vaccines. In conclusion, our study highlights the effectiveness of the FLU-COVID combo recombinant protein vaccine in preventing both influenza and COVID-19 infections.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Humanos , Ratones , Animales , Gripe Humana/prevención & control , SARS-CoV-2 , Vacunas de Subunidades Proteicas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunas Sintéticas/genética , Inmunidad , Anticuerpos Antivirales
12.
PLoS One ; 19(6): e0301157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917104

RESUMEN

Participants between the ages of 10-86 years old were vaccinated with split-inactivated influenza vaccine (Fluzone®) in six consecutive influenza seasons from 2016-2017 to 2021-2022. Vaccine effectiveness varies from season to season as a result of both host immune responses as well as evolutionary changes in the influenza virus surface glycoproteins that provide challenges to vaccine manufacturers to produce more effective annual vaccines. Next generation influenza vaccines are in development and may provide protective immune responses against a broader number of influenza viruses and reduce the need for annual vaccination. An improved understanding how current influenza vaccines are influenced by human host immune responses in people of different ages and co-morbidities is necessary for designing the next-generation of 'universal' or broadly-protective influenza vaccines. Overall, pre-existing immune responses to previous influenza virus exposures, either by past infections or vaccinations, is a critical factor influencing host responses to seasonal influenza vaccination. Participants vaccinated in consecutive seasons had reduced serum hemagglutination-inhibition (HAI) activity against strains included in the vaccine compared to participants that had not been vaccinated in the preceding 1-2 years prior to entering this study. The magnitude and breadth of these antibody responses were also modulated by the age of the participant. Elderly participants over 65 years of age, in general, had lower pre-existing HAI titers each season prior to vaccination with lower post-vaccination titers compared to children or young adults under the age of 35. The administration of higher doses (HD) of the split-inactivated vaccine enhanced the antibody titers in the elderly. This report showcases 6 consecutive years of antibody HAI activity in human subjects receiving seasonal split-inactivated influenza vaccine.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la Influenza , Gripe Humana , Estaciones del Año , Vacunas de Productos Inactivados , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Adulto , Anciano , Persona de Mediana Edad , Adolescente , Niño , Anciano de 80 o más Años , Masculino , Gripe Humana/prevención & control , Gripe Humana/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Adulto Joven , Vacunas de Productos Inactivados/inmunología , Vacunación , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Estudios Longitudinales
13.
Sci Rep ; 14(1): 13800, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877101

RESUMEN

Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines. In this study, a next generation of broadly-reactive influenza hemagglutinin (HA) vaccines were developed using the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology. These HA vaccines were formulated with Mastoparan 7 (M7-NH2) mast cell degranulating peptide adjuvant and administered intranasally to determine vaccine-induced seroconversion of antibodies against a panel of influenza viruses and protection following infection with H1N1 and H3N2 viruses in mice. Mice vaccinated intranasally with M7-NH2-adjuvanted COBRA HA vaccines had high HAIs against a panel of H1N1 and H3N2 influenza viruses and were protected against both morbidity and mortality, with reduced viral lung titers, following challenge with an H1N1 influenza virus. Additionally, M7-NH2 adjuvanted COBRA HA vaccines induced Th2 skewed immune responses with robust IgG and isotype antibodies in the serum and mucosal lung lavages. Overall, this intranasally delivered M7-NH2 -adjuvanted COBRA HA vaccine provides effective protection against drifted H1N1 and H3N2 viruses.


Asunto(s)
Adyuvantes Inmunológicos , Administración Intranasal , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Animales , Ratones , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antivirales/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Femenino , Ratones Endogámicos BALB C , Péptidos y Proteínas de Señalización Intercelular/inmunología , Adyuvantes de Vacunas/administración & dosificación
14.
Vaccines (Basel) ; 12(7)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39066344

RESUMEN

The hemagglutinin (HA) and neuraminidase (NA) surface proteins are the primary and secondary immune targets for most influenza vaccines. In this study, H2, H5, H7, N1, and N2 antigens designed by the computationally optimized broadly reactive antigen (COBRA) methodology were incorporated into an adjuvant-formulated vaccine to assess the protective efficacy and immune response against A/Hong Kong/125/2017 H7N9 virus challenge in pre-immune mice. The elicited antibodies bound to H2, H5, H7, N1, and N2 wild-type antigens; cH6/1 antigens; and cH7/3 antigens, with hemagglutinin inhibition (HAI) activity against broad panels of the H2Nx, H5Nx, and H7Nx influenza strains. Mice vaccinated with the pentavalent COBRA HA/NA vaccine showed little to no weight loss, no clinical signs of diseases, and were protected from mortality when challenged with the lethal H7N9 virus. Virus titers in the lungs of vaccinated mice were lower and cleared more rapidly than in mock-vaccinated mice. Some vaccinated mice showed no detectable lung injury or inflammation. Antibody-secreting cells were significantly increased in COBRA-vaccinated mice, with higher total Ig and H7-specific ASC. Thus, the combination of H2, H5, H7, N1, and N2 COBRA antigens presents a potential for the formulation of a universal influenza virus vaccine.

15.
medRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293130

RESUMEN

Many elderlies exhibited absent responses to influenza vaccines. Our exploration of this heterogeneity revealed associations with vaccine dose (HD vs. SD, OR: 0.59 (95%CrI, 0.4 to 0.87)), pre-vaccination titer levels (OR: 1.57 (95%CrI, 1.38 to 1.8), and gender (Male vs. Female OR: 2.12 (95%CrI, 1.38 to 3.25)).

16.
Vaccines (Basel) ; 12(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38793706

RESUMEN

Adjuvants enhance immune responses stimulated by vaccines. To date, many seasonal influenza vaccines are not formulated with an adjuvant. In the present study, the adjuvant Advax-SM™ was combined with next generation, broadly reactive influenza hemagglutinin (HA) vaccines that were designed using a computationally optimized broadly reactive antigen (COBRA) methodology. Advax-SM™ is a novel adjuvant comprising inulin polysaccharide and CpG55.2, a TLR9 agonist. COBRA HA vaccines were combined with Advax-SM™ or a comparator squalene emulsion (SE) adjuvant and administered to mice intramuscularly. Mice vaccinated with Advax-SM™ adjuvanted COBRA HA vaccines had increased serum levels of anti-influenza IgG and IgA, high hemagglutination inhibition activity against a panel of H1N1 and H3N2 influenza viruses, and increased anti-influenza antibody secreting cells isolated from spleens. COBRA HA plus Advax-SM™ immunized mice were protected against both morbidity and mortality following viral challenge and, at postmortem, had no detectable lung viral titers or lung inflammation. Overall, the Advax-SM™-adjuvanted COBRA HA formulation provided effective protection against drifted H1N1 and H3N2 influenza viruses.

17.
Res Sq ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826189

RESUMEN

Background: The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell type composition. Results: Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. Conclusions: Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.

18.
medRxiv ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585939

RESUMEN

The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 strains within individuals with no initial memory recall against these historical viruses. An in silico model of affinity maturation in germinal centers integrated with a model of differentiation and expansion of memory cells provides insight into the mechanisms underlying these results and shows how repeated exposure to the same immunogen can broaden the antibody response against diversified targets.

19.
Clin Epigenetics ; 16(1): 114, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169387

RESUMEN

BACKGROUND: The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell-type composition. RESULTS: Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test. CONCLUSIONS: Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.


Asunto(s)
Metilación de ADN , Inmunidad Innata , Vacunas contra la Influenza , Gripe Humana , Humanos , Metilación de ADN/genética , Metilación de ADN/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Inmunidad Innata/genética , Femenino , Masculino , Gripe Humana/prevención & control , Gripe Humana/inmunología , Gripe Humana/genética , Persona de Mediana Edad , Adulto , Transducción de Señal , Linfocitos T/inmunología , Estudios Longitudinales , Epigénesis Genética , Vacunación , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo
20.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464191

RESUMEN

Influenza viruses cause a common respiratory disease known as influenza. In humans, seasonal influenza viruses can lead to epidemics, with avian influenza viruses of particular concern because they can infect multiple species and lead to unpredictable and severe disease. Therefore, there is an urgent need for a universal influenza vaccine that provides protection against seasonal and pre-pandemic influenza virus strains. The cyclic GMP-AMP (cGAMP) is a promising adjuvant for subunit vaccines that promotes type I interferons production through the stimulator of interferon genes (STING) pathway. The encapsulation of cGAMP in acetalated dextran (Ace-DEX) microparticles (MPs) enhances its intracellular delivery. In this study, the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology was used to generate H1, H3, and H5 vaccine candidates. Monovalent and multivalent COBRA HA vaccines formulated with cGAMP Ace-DEX MPs were evaluated in a mouse model for antibody responses and protection against viral challenge. Serological analysis showed that cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccines elicited robust antigen-specific antibody responses after a prime-boost vaccination and antibody titers were further enhanced after second boost. Compared to COBRA vaccine groups with no adjuvant or blank MPs, the cGAMP MPs enhanced HAI antibody responses against COBRA vaccination. The HAI antibody titers were not significantly different between cGAMP MPs adjuvanted monovalent and multivalent COBRA vaccine groups for most of the viruses tested in panels. The cGAMP MPs adjuvanted COBRA vaccines groups had higher antigen-specific IgG2a binding titers than the COBRA vaccine groups with no adjuvant or blank MPs. The COBRA vaccines formulated with cGAMP MPs mitigated disease caused by influenza viral challenge and decreased pulmonary viral titers in mice. Therefore, the formulation of COBRA vaccines plus cGAMP MPs is a promising universal influenza vaccine that elicits protective immune responses against human seasonal and pre-pandemic strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA