Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(3): 892-904, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051605

RESUMEN

Many homodimeric enzymes tune their functions by exploiting either negative or positive cooperativity between subunits. In the SARS-CoV-2 Main protease (Mpro) homodimer, the latter has been suggested by symmetry in most of the 500 reported protease/ligand complex structures solved by macromolecular crystallography (MX). Here we apply the latter to both covalent and noncovalent ligands in complex with Mpro. Strikingly, our experiments show that the occupation of both active sites of the dimer originates from an excess of ligands. Indeed, cocrystals obtained using a 1:1 ligand/protomer stoichiometry lead to single occupation only. The empty binding site exhibits a catalytically inactive geometry in solution, as suggested by molecular dynamics simulations. Thus, Mpro operates through negative cooperativity with the asymmetric activity of the catalytic sites. This allows it to function with a wide range of substrate concentrations, making it resistant to saturation and potentially difficult to shut down, all properties advantageous for the virus' adaptability and resistance.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Ligandos , Proteasas 3C de Coronavirus/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
2.
EMBO J ; 38(24): e102155, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31721250

RESUMEN

Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.


Asunto(s)
Proliferación Celular , Mitocondrias/metabolismo , Biogénesis de Organelos , Transducción de Señal , Animales , Ciclo del Ácido Cítrico/fisiología , Escherichia coli/metabolismo , Femenino , Metabolómica , Ratones , Ratones Transgénicos , Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Proteómica , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Blood ; 137(15): 2070-2084, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512435

RESUMEN

The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration-approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V-targeted therapy of advanced SM.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Mastocitosis Sistémica/tratamiento farmacológico , Mutación Puntual/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Mastocitosis Sistémica/genética , Mastocitosis Sistémica/patología , Células Tumorales Cultivadas
4.
J Chem Inf Model ; 63(2): 643-654, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36623826

RESUMEN

Human NEET proteins contain two [2Fe-2S] iron-sulfur clusters, bound to three Cys residues and one His residue. They exist in two redox states. Recently, these proteins have revealed themselves as attractive drug targets for mitochondrial dysfunction-related diseases, such as type 2 diabetes, Wolfram syndrome 2, and cancers. Unfortunately, the lack of information and mechanistic understanding of ligands binding to the whole functional, cytoplasmatic domain has limited rational drug design approaches. Here, we use an enhanced sampling technique, volume-based metadynamics, recently developed by a team involving some of us, to predict the poses and affinity of the 2-benzamido-4-(1,2,3,4-tetrahydronaphthalen-2-yl)-thiophene-3-carboxylate ligand to the entire surface of the cytoplasmatic domain of the human NEET protein mitoNEET (mNT) in an aqueous solution. The calculations, based on the recently published X-ray structure of the complex, are consistent with the measured affinity. The calculated free energy landscape revealed that the ligand can bind in multiple sites and with poses other than the one found in the X-ray. This difference is likely to be caused by crystal packing effects that allow the ligand to interact with multiple adjacent NEET protein copies. Such extra contacts are of course absent in the solution; therefore, the X-ray pose is only transient in our calculations, where the binding free energy correlates with the number of contacts. We further evaluated how the reduction and protonation of the Fe-bound histidine, as well as temperature, can affect ligand binding. Both such modifications introduce the possibility for the ligand to bind in an area of the protein other than the one observed in the X-ray, with no or little impact on affinity. Overall, our study can provide insights on the molecular recognition mechanisms of ligand binding to mNT in different oxidative conditions, possibly helping rational drug design of NEET ligands.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Hierro-Azufre , Neoplasias , Humanos , Proteínas Hierro-Azufre/química , Ligandos , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción
5.
J Chem Inf Model ; 63(22): 7124-7132, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947485

RESUMEN

We provide a molecular-level description of the thermodynamics and mechanistic aspects of drug permeation through the cell membrane. As a case study, we considered the antimalaria FDA approved drug chloroquine. Molecular dynamics simulations of the molecule (in its neutral and protonated form) were performed in the presence of different lipid bilayers, with the aim of uncovering key aspects of the permeation process, a fundamental step for the drug's action. Free energy values obtained by well-tempered metadynamics simulations suggest that the neutral form is the only permeating protomer, consistent with experimental data. H-bond interactions of the drug with water molecules and membrane headgroups play a crucial role for permeation. The presence of the transmembrane potential, investigated here for the first time in a drug permeation study, does not qualitatively affect these conclusions.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Agua/química , Termodinámica , Química Física
6.
J Chem Inf Model ; 63(1): 161-172, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36468829

RESUMEN

Chloroquine (CQ) is a first-choice drug against malaria and autoimmune diseases. It has been co-administered with zinc against SARS-CoV-2 and soon dismissed because of safety issues. The structural features of Zn-CQ complexes and the effect of CQ on zinc distribution in cells are poorly known. In this study, state-of-the-art computations combined with experiments were leveraged to solve the structural determinants of zinc-CQ interactions in solution and the solid state. NMR, ESI-MS, and X-ray absorption and diffraction methods were combined with ab initio molecular dynamics calculations to address the kinetic lability of this complex. Within the physiological pH range, CQ binds Zn2+ through the quinoline ring nitrogen, forming [Zn(CQH)Clx(H2O)3-x](3+)-x (x = 0, 1, 2, and 3) tetrahedral complexes. The Zn(CQH)Cl3 species is stable at neutral pH and at high chloride concentrations typical of the extracellular medium, but metal coordination is lost at a moderately low pH as in the lysosomal lumen. The pentacoordinate complex [Zn(CQH)(H2O)4]3+ may exist in the absence of chloride. This in vitro/in silico approach can be extended to other metal-targeting drugs and bioinorganic systems.


Asunto(s)
COVID-19 , Complejos de Coordinación , Humanos , Cloroquina/farmacología , Cloroquina/química , Simulación de Dinámica Molecular , Zinc/química , Cloruros , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Metales
7.
Phys Chem Chem Phys ; 25(20): 13819-13824, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184538

RESUMEN

Structure-based drug design protocols may encounter difficulties to investigate poses when the biomolecular targets do not exhibit typical binding pockets. In this study, by providing two concrete examples from our labs, we suggest that the combination of metadynamics free energy methods (validated against affinity measurements), along with experimental structural information (by X-ray crystallography and NMR), can help to identify the poses of ligands on protein surfaces. The simulation workflow proposed here was implemented in a widely used code, namely GROMACS, and it could straightforwardly be applied to various drug-design campaigns targeting ligands' binding to protein surfaces.


Asunto(s)
Diseño de Fármacos , Proteínas de la Membrana , Simulación por Computador , Fenómenos Biofísicos , Ligandos , Unión Proteica , Simulación de Dinámica Molecular , Sitios de Unión
8.
PLoS Genet ; 16(3): e1008604, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130224

RESUMEN

The influence of environmental insults on the onset and progression of mitochondrial diseases is unknown. To evaluate the effects of infection on mitochondrial disease we used a mouse model of Leigh Syndrome, where a missense mutation in the Taco1 gene results in the loss of the translation activator of cytochrome c oxidase subunit I (TACO1) protein. The mutation leads to an isolated complex IV deficiency that mimics the disease pathology observed in human patients with TACO1 mutations. We infected Taco1 mutant and wild-type mice with a murine cytomegalovirus and show that a common viral infection exacerbates the complex IV deficiency in a tissue-specific manner. We identified changes in neuromuscular morphology and tissue-specific regulation of the mammalian target of rapamycin pathway in response to viral infection. Taken together, we report for the first time that a common stress condition, such as viral infection, can exacerbate mitochondrial dysfunction in a genetic model of mitochondrial disease.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa/genética , Infecciones por Citomegalovirus/genética , Complejo IV de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Muromegalovirus/patogenicidad , Animales , Deficiencia de Citocromo-c Oxidasa/virología , Infecciones por Citomegalovirus/virología , Modelos Animales de Enfermedad , Enfermedad de Leigh/genética , Enfermedad de Leigh/virología , Ratones , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/virología , Mutación/genética , Serina-Treonina Quinasas TOR/genética
9.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685931

RESUMEN

The RNA-binding protein human antigen R (HuR) regulates stability, translation, and nucleus-to-cytoplasm shuttling of its target mRNAs. This protein has been progressively recognized as a relevant therapeutic target for several pathologies, like cancer, neurodegeneration, as well as inflammation. Inhibitors of mRNA binding to HuR might thus be beneficial against a variety of diseases. Here, we present the rational identification of structurally novel HuR inhibitors. In particular, by combining chemoinformatic approaches, high-throughput virtual screening, and RNA-protein pulldown assays, we demonstrate that the 4-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)benzoate ligand exhibits a dose-dependent HuR inhibition effect in binding experiments. Importantly, the chemical scaffold is new with respect to the currently known HuR inhibitors, opening up a new avenue for the design of pharmaceutical agents targeting this important protein.


Asunto(s)
Benzoatos , Bioensayo , Proteína 1 Similar a ELAV , Humanos , Núcleo Celular , Peso Molecular , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteína 1 Similar a ELAV/antagonistas & inhibidores
10.
Rheumatology (Oxford) ; 60(4): 1640-1650, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33471122

RESUMEN

OBJECTIVE: To analyse the available evidence about the use of rituximab (RTX) and other biologic agents in eosinophilic granulomatosis with polyangiitis (EGPA) patients and to provide useful findings to inform the design of future, reliable clinical trials. METHODS: A systematic review was performed. A systematic search was conducted in PubMed/MEDLINE, Scopus, Web of Science and the Cochrane library databases on RTX, and an extensive literature search was conducted on other biologic agents. RESULTS: Forty-five papers pertinent to our questions were found: 16 retrospective cohort studies, 8 case series, 3 prospective cohort studies and 18 single case reports, for a total of 368 EGPA patients. More than 80% of evaluable patients achieved complete or partial remission with a tendency towards a higher rate of complete response in the pANCA-positive subgroup. CONCLUSION: Although the majority of the evaluable EGPA patients treated with RTX appears to achieve complete remission, we strongly believe that a number of sources of heterogeneity impair a clear interpretation of results and limit their transferability in clinical practice. Differences in design, enrolment criteria, outcome definition and measurement make a comparison among data obtained from studies on RTX and other biologic agents unreliable.


Asunto(s)
Granulomatosis con Poliangitis/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Rituximab/uso terapéutico , Humanos , Estudios Observacionales como Asunto , Inducción de Remisión , Resultado del Tratamiento
11.
J Biol Inorg Chem ; 26(7): 763-774, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34453614

RESUMEN

The NEET proteins constitute a unique class of [2Fe-2S] proteins. The metal ions bind to three cysteines and one histidine. The proteins' clusters exist in two redox states; the oxidized protein (containing two FeIII ions) can transfer the cluster to apo-acceptor protein(s), while the reduced form (containing one ferrous ion) remains bound to the protein frame. Here, we perform in silico and in vitro studies on human NEET proteins in both reduced and oxidized forms. Quantum chemical calculations on all available human NEET proteins structures suggest that reducing the cluster weakens the Fe-NHis and Fe-SCys bonds, similar to what is seen in other Fe-S proteins (e.g., ferredoxin and Rieske protein). We further show that the extra electron in the [2Fe-2S]+ clusters of one of the NEET proteins (mNT) is localized on the His-bound iron ion, consistently with our previous spectroscopic studies. Kinetic measurements demonstrate that the mNT [2Fe-2S]+ is released only by an increase in temperature. Thus, the reduced state of human NEET proteins [2Fe-2S] cluster is kinetically inert. This previously unrecognized kinetic inertness of the reduced state, along with the reactivity of the oxidized state, is unique across all [2Fe-2S] proteins. Finally, using a coevolutionary analysis, along with molecular dynamics simulations, we provide insight on the observed allostery between the loop L2 and the cluster region. Specifically, we show that W75, R76, K78, K79, F82 and G85 in the latter region share similar allosteric characteristics in both redox states.


Asunto(s)
Compuestos Férricos , Proteínas Hierro-Azufre , Ferredoxinas/metabolismo , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidación-Reducción
12.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769210

RESUMEN

After almost two years from its first evidence, the COVID-19 pandemic continues to afflict people worldwide, highlighting the need for multiple antiviral strategies. SARS-CoV-2 main protease (Mpro/3CLpro) is a recognized promising target for the development of effective drugs. Because single target inhibition might not be sufficient to block SARS-CoV-2 infection and replication, multi enzymatic-based therapies may provide a better strategy. Here we present a structural and biochemical characterization of the binding mode of MG-132 to both the main protease of SARS-CoV-2, and to the human Cathepsin-L, suggesting thus an interesting scaffold for the development of double-inhibitors. X-ray diffraction data show that MG-132 well fits into the Mpro active site, forming a covalent bond with Cys145 independently from reducing agents and crystallization conditions. Docking of MG-132 into Cathepsin-L well-matches with a covalent binding to the catalytic cysteine. Accordingly, MG-132 inhibits Cathepsin-L with nanomolar potency and reversibly inhibits Mpro with micromolar potency, but with a prolonged residency time. We compared the apo and MG-132-inhibited structures of Mpro solved in different space groups and we identified a new apo structure that features several similarities with the inhibited ones, offering interesting perspectives for future drug design and in silico efforts.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Catepsina L/efectos de los fármacos , Proteasas 3C de Coronavirus/efectos de los fármacos , Leupeptinas/química , Leupeptinas/farmacología , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Dominio Catalítico/efectos de los fármacos , Catepsina L/química , Proteasas 3C de Coronavirus/química , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Peptidomiméticos , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Replicación Viral/efectos de los fármacos , Difracción de Rayos X
13.
Molecules ; 26(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205049

RESUMEN

Aberrant RNA-protein complexes are formed in a variety of diseases. Identifying the ligands that interfere with their formation is a valuable therapeutic strategy. Molecular simulation, validated against experimental data, has recently emerged as a powerful tool to predict both the pose and energetics of such ligands. Thus, the use of molecular simulation may provide insight into aberrant molecular interactions in diseases and, from a drug design perspective, may allow for the employment of less wet lab resources than traditional in vitro compound screening approaches. With regard to basic research questions, molecular simulation can support the understanding of the exact molecular interaction and binding mode. Here, we focus on examples targeting RNA-protein complexes in neurodegenerative diseases and viral infections. These examples illustrate that the strategy is rather general and could be applied to different pharmacologically relevant approaches. We close this study by outlining one of these approaches, namely the light-controllable association of small molecules with RNA, as an emerging approach in RNA-targeting therapy.


Asunto(s)
Péptidos/farmacología , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Diseño de Fármacos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Unión Proteica/efectos de los fármacos , ARN/química , Proteínas de Unión al ARN/química
14.
Molecules ; 26(6)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799482

RESUMEN

Flavonoids are plant bioactives that are recognized as hormone-like polyphenols because of their similarity to the endogenous sex steroids 17ß-estradiol and testosterone, and to their estrogen- and androgen-like activity. Most efforts to verify flavonoid binding to nuclear receptors (NRs) and explain their action have been focused on ERα, while less attention has been paid to other nuclear and non-nuclear membrane androgen and estrogen receptors. Here, we investigate six flavonoids (apigenin, genistein, luteolin, naringenin, quercetin, and resveratrol) that are widely present in fruits and vegetables, and often used as replacement therapy in menopause. We performed comparative computational docking simulations to predict their capability of binding nuclear receptors ERα, ERß, ERRß, ERRγ, androgen receptor (AR), and its variant ART877A and membrane receptors for androgens, i.e., ZIP9, GPRC6A, OXER1, TRPM8, and estrogens, i.e., G Protein-Coupled Estrogen Receptor (GPER). In agreement with data reported in literature, our results suggest that these flavonoids show a relevant degree of complementarity with both estrogen and androgen NR binding sites, likely triggering genomic-mediated effects. It is noteworthy that reliable protein-ligand complexes and estimated interaction energies were also obtained for some suggested estrogen and androgen membrane receptors, indicating that flavonoids could also exert non-genomic actions. Further investigations are needed to clarify flavonoid multiple genomic and non-genomic effects. Caution in their administration could be necessary, until the safe assumption of these natural molecules that are largely present in food is assured.


Asunto(s)
Andrógenos/metabolismo , Núcleo Celular/metabolismo , Estrógenos/metabolismo , Flavonoides/metabolismo , Unión Proteica/fisiología , Receptores de Superficie Celular/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Receptores de Estrógenos , Testosterona/metabolismo
15.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652554

RESUMEN

The translocator protein (TSPO) is a 18kDa transmembrane protein, ubiquitously present in human mitochondria. It is overexpressed in tumor cells and at the sites of neuroinflammation, thus representing an important biomarker, as well as a promising drug target. In mammalian TSPO, there are cholesterol-binding motifs, as well as a binding cavity able to accommodate different chemical compounds. Given the lack of structural information for the human protein, we built a model of human (h) TSPO in the apo state and in complex with PK11195, a molecule routinely used in positron emission tomography (PET) for imaging of neuroinflammatory sites. To better understand the interactions of PK11195 and cholesterol with this pharmacologically relevant protein, we ran molecular dynamics simulations of the apo and holo proteins embedded in a model membrane. We found that: (i) PK11195 stabilizes hTSPO structural fold; (ii) PK11195 might enter in the binding site through transmembrane helices I and II of hTSPO; (iii) PK11195 reduces the frequency of cholesterol binding to the lower, N-terminal part of hTSPO in the inner membrane leaflet, while this impact is less pronounced for the upper, C-terminal part in the outer membrane leaflet, where the ligand binding site is located; (iv) very interestingly, cholesterol most frequently binds simultaneously to the so-called CRAC and CARC regions in TM V in the free form (residues L150-X-Y152-X(3)-R156 and R135-X(2)-Y138-X(2)-L141, respectively). However, when the protein is in complex with PK11195, cholesterol binds equally frequently to the CRAC-resembling motif that we observed in TM I (residues L17-X(2)-F20-X(3)-R24) and to CRAC in TM V. We expect that the CRAC-like motif in TM I will be of interest in future experimental investigations. Thus, our MD simulations provide insight into the structural features of hTSPO and the previously unknown interplay between PK11195 and cholesterol interactions with this pharmacologically relevant protein.


Asunto(s)
Colesterol/química , Isoquinolinas/química , Estructura Secundaria de Proteína , Receptores de GABA/ultraestructura , Sitios de Unión/genética , Transporte Biológico/genética , Humanos , Ligandos , Mitocondrias/genética , Mitocondrias/ultraestructura , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica/genética , Dominios Proteicos/genética , Pliegue de Proteína , Receptores de GABA/química
16.
Molecules ; 26(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557115

RESUMEN

The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.


Asunto(s)
COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , SARS-CoV-2/enzimología , Antivirales/química , Antivirales/farmacología , Sitios de Unión , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Conformación Proteica , Tratamiento Farmacológico de COVID-19
17.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30126926

RESUMEN

The molecular roles of the dually targeted ElaC domain protein 2 (ELAC2) during nuclear and mitochondrial RNA processing in vivo have not been distinguished. We generated conditional knockout mice of ELAC2 to identify that it is essential for life and its activity is non-redundant. Heart and skeletal muscle-specific loss of ELAC2 causes dilated cardiomyopathy and premature death at 4 weeks. Transcriptome-wide analyses of total RNAs, small RNAs, mitochondrial RNAs, and miRNAs identified the molecular targets of ELAC2 in vivo We show that ELAC2 is required for processing of tRNAs and for the balanced maintenance of C/D box snoRNAs, miRNAs, and a new class of tRNA fragments. We identify that correct biogenesis of regulatory non-coding RNAs is essential for both cytoplasmic and mitochondrial protein synthesis and the assembly of mitochondrial ribosomes and cytoplasmic polysomes. We show that nuclear tRNA processing is required for the balanced production of snoRNAs and miRNAs for gene expression and that 3' tRNA processing is an essential step in the production of all mature mitochondrial RNAs and the majority of nuclear tRNAs.


Asunto(s)
Endorribonucleasas/genética , Proteínas de Neoplasias/genética , ARN Mitocondrial/genética , ARN no Traducido/genética , Animales , Núcleo Celular/genética , Perfilación de la Expresión Génica , Ratones , MicroARNs/genética , ARN Nucleolar Pequeño/genética , ARN de Transferencia/genética , ARN no Traducido/clasificación , ARN no Traducido/aislamiento & purificación
18.
Acta Neurol Scand ; 142(5): 511-516, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32432792

RESUMEN

BACKGROUND: Circulating microRNAs have emerged as novel multiple sclerosis (MS) biomarkers. AIMS: To assess the association between candidate miR expression in serum samples of patients with MS and the disease course. METHODS: Serum levels of ten microRNAs (ie, miR-199, miR-128-3p, miR-20a-5p, miR-27a-3p, miR-15b-5p, miR-325, miR-92a1-5p, miR-223-5p, miR-22-5p, and miR-23a-5p) were measured in 74 MS cases and 17 non-MS controls consecutively enrolled at Verona University Hospital. The association of microRNA expression with patients' clinical and MRI features was analyzed. Candidate microRNAs were detected by real-time PCR and expressed as ratio of each microRNA level to a normalizer. RESULTS: Serum miR-128-3p levels were higher in progressive than relapsing MS (median ratio 2.86 vs 0.73, P = .036). In addition, miR-128-3p was upregulated in patients without relapses after sample collection compared to cases who relapsed (1.64 vs 0.82; P = .014). miR-128-3p levels and relapse rate were inversely correlated (r = -.44, P = .008). CONCLUSIONS: Serum levels of mir-128-3p could be related to biological mechanisms underlying MS activity and progression.


Asunto(s)
Biomarcadores/sangre , MicroARN Circulante/sangre , MicroARNs/sangre , Esclerosis Múltiple/sangre , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recurrencia
19.
Nucleic Acids Res ; 46(22): 11687-11697, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30407547

RESUMEN

Cisplatin is one of the most widely used anticancer drugs. Its efficiency is unfortunately severely hampered by resistance. The High Mobility Group Box (HMGB) proteins may sensitize tumor cells to cisplatin by specifically binding to platinated DNA (PtDNA) lesions. In vivo, the HMGB/PtDNA binding is regulated by multisite post-translational modifications (PTMs). The impact of PTMs on the HMGB/PtDNA complex at atomistic level is here investigated by enhanced sampling molecular simulations. The PTMs turn out to affect the structure of the complex, the mobility of several regions (including the platinated site), and the nature of the protein/PtDNA non-covalent interactions. Overall, the multisite PTMs increase significantly the apparent synchrony of all the contacts between the protein and PtDNA. Consequently, the hydrophobic anchoring of the side chain of F37 between the two cross-linked guanines at the platinated site-a key element of the complexes formation - is more stable than in the complex without PTM. These differences can account for the experimentally measured greater affinity for PtDNA of the protein isoforms with PTMs. The collective behavior of multisite PTMs, as revealed here by the synchrony of contacts, may have a general significance for the modulation of intermolecular recognitions occurring in vivo.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , ADN/química , Proteína HMGB1/química , Platino (Metal)/química , Procesamiento Proteico-Postraduccional , Acetilación , Antineoplásicos/metabolismo , Sitios de Unión , Cisplatino/metabolismo , ADN/metabolismo , Proteína HMGB1/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Fosforilación , Platino (Metal)/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Termodinámica
20.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709107

RESUMEN

Recent studies suggest that Tyr-39 might play a critical role for both the normal function and the pathological dysfunction of α-synuclein (αS), an intrinsically disordered protein involved in Parkinson's disease. We perform here a comparative analysis between the structural features of human αS and its Y39A, Y39F, and Y39L variants. By the combined application of site-directed mutagenesis, biophysical techniques, and enhanced sampling molecular simulations, we show that removing aromatic functionality at position 39 of monomeric αS leads to protein variants populating more compact conformations, conserving its disordered nature and secondary structure propensities. Contrasting with the subtle changes induced by mutations on the protein structure, removing aromaticity at position 39 impacts strongly on the interaction of αS with the potent amyloid inhibitor phthalocyanine tetrasulfonate (PcTS). Our findings further support the role of Tyr-39 in forming essential inter and intramolecular contacts that might have important repercussions for the function and the dysfunction of αS.


Asunto(s)
Amiloide/química , Proteínas Intrínsecamente Desordenadas/química , alfa-Sinucleína/química , Amiloide/genética , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Enfermedad de Parkinson/genética , Mutación Puntual , Conformación Proteica , Tirosina/química , Tirosina/genética , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA