Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885925

RESUMEN

Local tetanus develops when limited amounts of tetanus neurotoxin (TeNT) are released by Clostridium tetani generated from spores inside a necrotic wound. Within days, a spastic paralysis restricted to the muscles of the affected anatomical area develops. This paralysis follows the retrograde transport of TeNT inside the axons of spinal cord motoneurons and its uptake by inhibitory interneurons with cleavage of a vesicle-associated membrane protein required for neurotransmitter release. Consequently, incontrollable excitation of motoneurons causes contractures of innervated muscles and leads to local spastic paralysis. Here, the initial events occurring close to the site of TeNT release were investigated in a mouse model of local tetanus. A peripheral flaccid paralysis was found to occur, before or overlapping, the spastic paralysis. At variance from the confined TeNT proteolytic activity at the periphery, central vesicle-associated membrane protein cleavage can be detected within inhibitory interneurons controlling motor neuron efferents innervating muscle groups distant from the site of TeNT release. These results indicate that TeNT does have peripheral activity in tetanus and explains why the spastic paralysis observed in local tetanus, although confined to single limbs, generally affects multiple muscles. The initial TeNT neuroparalytic activity can be detected by measuring the compound muscle action potential, providing a very early diagnosis and therapy, and thus preventing the ensuing life-threatening generalized tetanus.

2.
Arch Toxicol ; 96(6): 1521-1539, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35333944

RESUMEN

Tetanus and botulinum neurotoxins cause the neuroparalytic syndromes of tetanus and botulism, respectively, by delivering inside different types of neurons, metalloproteases specifically cleaving the SNARE proteins that are essential for the release of neurotransmitters. Research on their mechanism of action is intensively carried out in order to devise improved therapies based on antibodies and chemical drugs. Recently, major results have been obtained with human monoclonal antibodies and with single chain antibodies that have allowed one to neutralize the metalloprotease activity of botulinum neurotoxin type A1 inside neurons. In addition, a method has been devised to induce a rapid molecular evolution of the metalloprotease domain of botulinum neurotoxin followed by selection driven to re-target the metalloprotease activity versus novel targets with respect to the SNARE proteins. At the same time, an intense and wide spectrum clinical research on novel therapeutics based on botulinum neurotoxins is carried out, which are also reviewed here.


Asunto(s)
Toxinas Botulínicas Tipo A , Clostridium botulinum , Tétanos , Toxinas Botulínicas Tipo A/uso terapéutico , Toxinas Botulínicas Tipo A/toxicidad , Clostridium botulinum/metabolismo , Humanos , Neurotoxinas/toxicidad , Proteínas SNARE
3.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35457172

RESUMEN

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Asunto(s)
Toxinas Botulínicas Tipo A , Tétanos , Animales , Anticuerpos/metabolismo , Ratones , Neurotoxinas/metabolismo , Péptidos/metabolismo , Proteolisis , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Conejos , Ratas , Toxina Tetánica/química , Toxina Tetánica/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163106

RESUMEN

We used α-Latrotoxin (α-LTx), the main neurotoxic component of the black widow spider venom, which causes degeneration of the neuromuscular junction (NMJ) followed by a rapid and complete regeneration, as a molecular tool to identify by RNA transcriptomics factors contributing to the structural and functional recovery of the NMJ. We found that Urocortin 2 (UCN2), a neuropeptide involved in the stress response, is rapidly expressed at the NMJ after acute damage and that inhibition of CRHR2, the specific receptor of UCN2, delays neuromuscular transmission rescue. Experiments in neuronal cultures show that CRHR2 localises at the axonal tips of growing spinal motor neurons and that its expression inversely correlates with synaptic maturation. Moreover, exogenous UCN2 enhances the growth of axonal sprouts in cultured neurons in a CRHR2-dependent manner, pointing to a role of the UCN2-CRHR2 axis in the regulation of axonal growth and synaptogenesis. Consistently, exogenous administration of UCN2 strongly accelerates the regrowth of motor axon terminals degenerated by α-LTx, thereby contributing to the functional recovery of neuromuscular transmission after damage. Taken together, our results posit a novel role for UCN2 and CRHR2 as a signalling axis involved in NMJ regeneration.


Asunto(s)
Axones/fisiología , Neuronas Motoras/citología , Regeneración Nerviosa , Enfermedades de la Unión Neuromuscular/prevención & control , Unión Neuromuscular/patología , Venenos de Araña/toxicidad , Urocortinas/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Unión Neuromuscular/efectos de los fármacos , Enfermedades de la Unión Neuromuscular/inducido químicamente , Enfermedades de la Unión Neuromuscular/metabolismo , Enfermedades de la Unión Neuromuscular/patología , Terminales Presinápticos , Ratas , Ratas Sprague-Dawley , Urocortinas/genética
5.
J Neurochem ; 158(6): 1244-1253, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33629408

RESUMEN

Tetanus is a deadly but preventable disease caused by a protein neurotoxin produced by Clostridium tetani. Spores of C. tetani may contaminate a necrotic wound and germinate into a vegetative bacterium that releases a toxin, termed tetanus neurotoxin (TeNT). TeNT enters the general circulation, binds to peripheral motor neurons and sensory neurons, and is transported retroaxonally to the spinal cord. It then enters inhibitory interneurons and blocks the release of glycine or GABA causing a spastic paralysis. This review attempts to correlate the metalloprotease activity of TeNT and its trafficking and localization into the vertebrate body to the nature and sequence of appearance of the symptoms of tetanus.


Asunto(s)
Encéfalo/metabolismo , Nervios Periféricos/metabolismo , Médula Espinal/metabolismo , Toxina Tetánica/metabolismo , Tétanos/metabolismo , Animales , Encéfalo/microbiología , Humanos , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/metabolismo , Nervios Periféricos/microbiología , Médula Espinal/microbiología , Tétanos/prevención & control , Toxina Tetánica/antagonistas & inhibidores , Toxoide Tetánico/administración & dosificación , Toxoide Tetánico/metabolismo
6.
Cell Microbiol ; 21(11): e13037, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31050145

RESUMEN

A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism.


Asunto(s)
Toxinas Botulínicas Tipo A/química , Disulfuros/química , Toxina Tetánica/química , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Animales , Azoles/uso terapéutico , Toxinas Botulínicas Tipo A/toxicidad , Botulismo/tratamiento farmacológico , Botulismo/fisiopatología , Disulfuros/uso terapéutico , Disulfuros/toxicidad , Humanos , Imidazoles/uso terapéutico , Isoindoles , Neurotoxinas/química , Neurotoxinas/toxicidad , Compuestos de Organoselenio/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Dominios Proteicos , Vesículas Sinápticas/metabolismo , Tétanos/tratamiento farmacológico , Tétanos/fisiopatología , Toxina Tetánica/toxicidad , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
7.
Pharmacol Rev ; 69(2): 200-235, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28356439

RESUMEN

The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology.


Asunto(s)
Toxinas Botulínicas , Neurotoxinas , Animales , Toxinas Botulínicas/farmacología , Toxinas Botulínicas/uso terapéutico , Toxinas Botulínicas/toxicidad , Humanos , Neurotoxinas/farmacología , Neurotoxinas/uso terapéutico , Neurotoxinas/toxicidad
8.
J Neurosci ; 38(48): 10329-10337, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30315128

RESUMEN

Botulinum neurotoxin Type A (BoNT/A) is an effective treatment for several movement disorders, including spasticity and dystonia. BoNT/A acts by cleaving synaptosomal-associated protein of 25 kDa (SNAP-25) at the neuromuscular junction, thus blocking synaptic transmission and weakening overactive muscles. However, not all the therapeutic benefits of the neurotoxin are explained by peripheral neuroparalysis, suggesting an action of BoNT/A on central circuits. Currently, the specific targets of BoNT/A central activity remain unclear. Here, we show that catalytically active BoNT/A is transported to the facial nucleus (FN) after injection into the nasolabial musculature of rats and mice. BoNT/A-mediated cleavage of SNAP-25 in the FN is prevented by intracerebroventricular delivery of antitoxin antibodies, demonstrating that BoNT/A physically leaves the motoneurons to enter second-order neurons. Analysis of intoxicated terminals within the FN shows that BoNT/A is transcytosed preferentially into cholinergic synapses. The cholinergic boutons containing cleaved SNAP-25 are associated with a larger size, suggesting impaired neuroexocytosis. Together, the present findings indicate a previously unrecognized source of reduced motoneuron drive after BoNT/A via blockade of central, excitatory cholinergic inputs. These data highlight the ability of BoNT/A to selectively target and modulate specific central circuits, with consequent impact on its therapeutic effectiveness in movement disorders.SIGNIFICANCE STATEMENT Botulinum neurotoxins are among the most potent toxins known. Despite this, their specific and reversible action prompted their use in clinical practice to treat several neuromuscular pathologies (dystonia, spasticity, muscle spasms) characterized by hyperexcitability of peripheral nerve terminals or even in nonpathological applications (i.e., cosmetic use). Substantial experimental and clinical evidence indicates that not all botulinum neurotoxin Type A (BoNT/A) effects can be explained solely by the local action (i.e., silencing of the neuromuscular junction). In particular, there are cases in which the clinical benefit exceeds the duration of peripheral neurotransmission blockade. In this study, we demonstrate that BoNT/A is transported to facial motoneurons, released, and internalized preferentially into cholinergic terminals impinging onto the motoneurons. Our data demonstrate a direct central action of BoNT/A.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Neuronas Colinérgicas/fisiología , Neurotoxinas/administración & dosificación , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Animales , Neuronas Colinérgicas/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Long-Evans , Sinapsis/efectos de los fármacos
9.
PLoS Pathog ; 13(8): e1006567, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28800600

RESUMEN

Botulinum neurotoxin serotype C (BoNT/C) is a neuroparalytic toxin associated with outbreaks of animal botulism, particularly in birds, and is the only BoNT known to cleave two different SNARE proteins, SNAP-25 and syntaxin. BoNT/C was shown to be a good substitute for BoNT/A1 in human dystonia therapy because of its long lasting effects and absence of neuromuscular damage. Two triple mutants of BoNT/C, namely BoNT/C S51T/R52N/N53P (BoNT/C α-51) and BoNT/C L200W/M221W/I226W (BoNT/C α-3W), were recently reported to selectively cleave syntaxin and have been used here to evaluate the individual contribution of SNAP-25 and syntaxin cleavage to the effect of BoNT/C in vivo. Although BoNT/C α-51 and BoNT/C α-3W toxins cleave syntaxin with similar efficiency, we unexpectedly found also cleavage of SNAP-25, although to a lesser extent than wild type BoNT/C. Interestingly, the BoNT/C mutants exhibit reduced lethality compared to wild type toxin, a result that correlated with their residual activity against SNAP-25. In spite of this, a local injection of BoNT/C α-51 persistently impairs neuromuscular junction activity. This is due to an initial phase in which SNAP-25 cleavage causes a complete blockade of neurotransmission, and to a second phase of incomplete impairment ascribable to syntaxin cleavage. Together, these results indicate that neuroparalysis of BoNT/C at the neuromuscular junction is due to SNAP-25 cleavage, while the proteolysis of syntaxin provides a substantial, but incomplete, neuromuscular impairment. In light of this evidence, we discuss a possible clinical use of BoNT/C α-51 as a botulinum neurotoxin endowed with a wide safety margin and a long lasting effect.


Asunto(s)
Toxinas Botulínicas/toxicidad , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica/efectos de los fármacos , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Toxinas Botulínicas/genética , Potenciales Evocados/efectos de los fármacos , Immunoblotting , Inmunohistoquímica , Ratones , Mutación , Unión Neuromuscular/efectos de los fármacos , Técnicas de Placa-Clamp , Proteolisis , Ratas
10.
Cell Microbiol ; 19(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27404998

RESUMEN

Botulinum and tetanus neurotoxins are the most toxic substances known and form the growing family of clostridial neurotoxins. They are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol where their substrates, the three SNARE proteins, are localised. L translocation is accompanied by unfolding, and it has to be reduced and reacquire the native fold to exert its neurotoxicity. The Thioredoxin reductase-Thioredoxin system is responsible for the reduction, but it is unknown whether the refolding of L is spontaneous or aided by host chaperones. Here we report that geldanamycin, a specific inhibitor of heat shock protein 90, hampers the refolding of L after membrane translocation and completely prevents the cleavage of SNAREs. We also found that geldanamycin strongly synergises with PX-12, an inhibitor of thioredoxin, suggesting that the processes of L chain refolding and interchain disulfide reduction are strictly coupled. Indeed we found that the heat shock protein 90 and the Thioredoxin reductase-Thioredoxin system physically interact on synaptic vesicle where they orchestrate a chaperone-redox machinery which is exploited by clostridial neurotoxins to deliver their catalytic part into the cytosol.


Asunto(s)
Citosol/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Pliegue de Proteína , Toxina Tetánica/metabolismo , Transporte de Proteínas , Proteolisis , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo
11.
Biochim Biophys Acta ; 1858(3): 467-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26307528

RESUMEN

Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Asunto(s)
Toxinas Botulínicas/metabolismo , Membrana Celular/metabolismo , Endocitosis , Terminales Presinápticos/metabolismo , Proteínas SNARE/metabolismo , Toxina Tetánica/metabolismo , Animales , Toxinas Botulínicas/química , Membrana Celular/química , Humanos , Concentración de Iones de Hidrógeno , Ratones , Terminales Presinápticos/química , Transporte de Proteínas , Proteínas SNARE/química , Relación Estructura-Actividad , Toxina Tetánica/química
12.
J Cell Sci ; 126(Pt 14): 3134-40, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23687382

RESUMEN

The SNARE proteins VAMP/synaptobrevin, SNAP-25 and syntaxin are core components of the apparatus that mediates neurotransmitter release. They form a heterotrimeric complex, and an undetermined number of SNARE complexes assemble to form a super-complex. Here, we present a radial model of this nanomachine. Experiments performed with botulinum neurotoxins led to the identification of one arginine residue in SNAP-25 and one aspartate residue in syntaxin (R206 and D253 in Drosophila melanogaster). These residues are highly conserved and predicted to play a major role in the protein-protein interactions between SNARE complexes by forming an ionic couple. Accordingly, we generated transgenic Drosophila lines expressing SNAREs mutated in these residues and performed an electrophysiological analysis of their neuromuscular junctions. Our results indicate that SNAP-25-R206 and syntaxin-D253 play a major role in neuroexocytosis and support a radial assembly of several SNARE complexes interacting via the ionic couple formed by these two residues.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Canales Iónicos/metabolismo , Unión Neuromuscular/fisiología , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Animales Modificados Genéticamente , Toxinas Botulínicas/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Ingeniería Genética , Larva , Modelos Químicos , Mutación/genética , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Proteínas Qa-SNARE/genética , Estereoisomerismo , Proteína 25 Asociada a Sinaptosomas/genética
13.
PLoS Pathog ; 8(12): e1003087, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23300443

RESUMEN

The striking differences between the clinical symptoms of tetanus and botulism have been ascribed to the different fate of the parental neurotoxins once internalised in motor neurons. Tetanus toxin (TeNT) is known to undergo transcytosis into inhibitory interneurons and block the release of inhibitory neurotransmitters in the spinal cord, causing a spastic paralysis. In contrast, botulinum neurotoxins (BoNTs) block acetylcholine release at the neuromuscular junction, therefore inducing a flaccid paralysis. Whilst overt experimental evidence supports the sorting of TeNT to the axonal retrograde transport pathway, recent findings challenge the established view that BoNT trafficking is restricted to the neuromuscular junction by highlighting central effects caused by these neurotoxins. These results suggest a more complex scenario whereby BoNTs also engage long-range trafficking mechanisms. However, the intracellular pathways underlying this process remain unclear. We sought to fill this gap by using primary motor neurons either in mass culture or differentiated in microfluidic devices to directly monitor the endocytosis and axonal transport of full length BoNT/A and BoNT/E and their recombinant binding fragments. We show that BoNT/A and BoNT/E are internalised by spinal cord motor neurons and undergo fast axonal retrograde transport. BoNT/A and BoNT/E are internalised in non-acidic axonal carriers that partially overlap with those containing TeNT, following a process that is largely independent of stimulated synaptic vesicle endo-exocytosis. Following intramuscular injection in vivo, BoNT/A and TeNT displayed central effects with a similar time course. Central actions paralleled the peripheral spastic paralysis for TeNT, but lagged behind the onset of flaccid paralysis for BoNT/A. These results suggest that the fast axonal retrograde transport compartment is composed of multifunctional trafficking organelles orchestrating the simultaneous transfer of diverse cargoes from nerve terminals to the soma, and represents a general gateway for the delivery of virulence factors and pathogens to the central nervous system.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas/farmacología , Neuronas Motoras/efectos de los fármacos , Neurotransmisores/antagonistas & inhibidores , Acetilcolina/metabolismo , Animales , Toxinas Botulínicas/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Células Cultivadas , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Endocitosis/efectos de los fármacos , Ratones , Neuronas Motoras/metabolismo , Unión Neuromuscular/metabolismo , Parálisis/metabolismo , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Transmisión Sináptica/efectos de los fármacos , Toxina Tetánica/metabolismo , Toxina Tetánica/farmacología
14.
Biochem Biophys Res Commun ; 430(1): 38-42, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23200837

RESUMEN

Tetanus and botulinum neurotoxins act inside nerve terminals and, therefore, they have to translocate across a membrane to reach their targets. This translocation is driven by a pH gradient, acidic on the cis side and neutral on the cytosol. Recently, a protocol to induce translocation from the plasma membrane was established. Here, we have used this approach to study the temperature dependence and time course of the entry of the L chain of tetanus neurotoxin and of botulinum neurotoxins type C and D across the plasma membrane of cerebellar granular neurons. The time course of translocation of the L chain varies for the three neurotoxins, but it remains in the range of minutes at 37 °C, whilst it takes much longer at 20 °C. BoNT/C does not enter neurons at 20 °C. Translocation also depends on the dimension of the pH gradient. These data are discussed with respect to the contribution of the membrane translocation step to the total time to paralysis and to the low toxicity of these neurotoxins in cold-blood vertebrates.


Asunto(s)
Toxinas Botulínicas/metabolismo , Membrana Celular/enzimología , Metaloendopeptidasas/metabolismo , Toxina Tetánica/metabolismo , Animales , Toxinas Botulínicas/toxicidad , Células Cultivadas , Concentración de Iones de Hidrógeno , Metaloendopeptidasas/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Biosíntesis de Proteínas , Ratas , Proteína 25 Asociada a Sinaptosomas/metabolismo , Temperatura , Toxina Tetánica/toxicidad , Factores de Tiempo
15.
Trends Neurosci ; 46(9): 695-697, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385877

RESUMEN

Joensuu and colleagues have recently shown that botulinum neurotoxin (BoNT) type A exploits a heterotrimeric complex in the presynaptic membrane to bind to and enter neurons using a Trojan horse-like mechanism. Similar processes may be relevant to the neuronal entry of different botulinum toxin serotypes and other neuropathogens.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxinas Botulínicas Tipo A/metabolismo , Vesículas Sinápticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo
16.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37159261

RESUMEN

Cephalic tetanus (CT) is a severe form of tetanus that follows head wounds and the intoxication of cranial nerves by tetanus neurotoxin (TeNT). Hallmarks of CT are cerebral palsy, which anticipates the spastic paralysis of tetanus, and rapid evolution of cardiorespiratory deficit even without generalized tetanus. How TeNT causes this unexpected flaccid paralysis, and how the canonical spasticity then rapidly evolves into cardiorespiratory defects, remain unresolved aspects of CT pathophysiology. Using electrophysiology and immunohistochemistry, we demonstrate that TeNT cleaves its substrate vesicle-associated membrane protein within facial neuromuscular junctions and causes a botulism-like paralysis overshadowing tetanus spasticity. Meanwhile, TeNT spreads among brainstem neuronal nuclei and, as shown by an assay measuring the ventilation ability of CT mice, harms essential functions like respiration. A partial axotomy of the facial nerve revealed a potentially new ability of TeNT to undergo intra-brainstem diffusion, which allows the toxin to spread to brainstem nuclei devoid of direct peripheral efferents. This mechanism is likely to be involved in the transition from local to generalized tetanus. Overall, the present findings suggest that patients with idiopathic facial nerve palsy should be immediately considered for CT and treated with antisera to block the potential progression to a life-threatening form of tetanus.


Asunto(s)
Toxinas Botulínicas , Tétanos , Ratones , Animales , Toxinas Botulínicas/metabolismo , Unión Neuromuscular/metabolismo , Parálisis
17.
J Neurosci ; 31(44): 15650-9, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049408

RESUMEN

Botulinum neurotoxin type A (BoNT/A) is a metalloprotease that blocks synaptic transmission via the cleavage of SNAP-25 (synaptosomal-associated protein of 25 kDa). BoNT/A is successfully used in clinical neurology for the treatment of several neuromuscular pathologies and pain syndromes. Despite its widespread use, relatively little is known on BoNT/A intracellular trafficking in neurons. Using the visual pathway as a model system, here we show that catalytically active BoNT/A is capable of undergoing anterograde axonal transport and transcytosis. Following BoNT/A injection into the rat eye, significant levels of BoNT/A-cleaved SNAP-25 appeared in the retinorecipient layers of the superior colliculus (SC). Anterograde propagation of BoNT/A effects required axonal transport, ruling out a systemic spread of the toxin. Cleaved SNAP-25 was present in presynaptic structures of the tectum, but retinal terminals were devoid of the immunoreactivity, indicative of transcytosis. Experiments based on sequential administration of BoNT/A and BoNT/E showed a persistent catalytic activity of BoNT/A in tectal cells following its injection into the retina. Our findings demonstrate that catalytically active BoNT/A is anterogradely transported from the eye to the SC and transcytosed to tectal synapses. These data are important for a more complete understanding of the mechanisms of action of BoNT/A.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas/farmacocinética , Proteínas del Tejido Nervioso/metabolismo , Neurotoxinas/farmacología , Transcitosis/efectos de los fármacos , Vías Visuales/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Toxinas Botulínicas/administración & dosificación , Antígeno CD11b/metabolismo , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/toxicidad , Lateralidad Funcional/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Inyecciones Intraoculares/métodos , Ácido Kaínico/toxicidad , Proteínas del Tejido Nervioso/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Long-Evans , Colículos Superiores/efectos de los fármacos , Colículos Superiores/metabolismo , Proteína 25 Asociada a Sinaptosomas/efectos de los fármacos , Proteína 25 Asociada a Sinaptosomas/metabolismo , Factores de Tiempo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vías Visuales/lesiones , Vías Visuales/metabolismo
18.
J Cell Sci ; 123(Pt 19): 3276-83, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20826463

RESUMEN

An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular junctions of Drosophila melanogaster larvae expressing SNAP-25 in which Arg206 had been replaced by alanine. Electrophysiological recordings of spontaneous and evoked neurotransmitter release under different conditions as well as testing for the assembly of the SNARE complex indicate that this residue, which is at the P(1)' position of the botulinum neurotoxin A cleavage site, plays an essential role in neuroexocytosis. Computer graphic modelling suggests that this arginine residue mediates protein-protein contacts within a rosette of SNARE complexes that assembles to mediate the fusion of synaptic vesicles with the presynaptic plasma membrane.


Asunto(s)
Encéfalo/metabolismo , Drosophila melanogaster/fisiología , Proteínas Mutantes/metabolismo , Unión Neuromuscular/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Animales Modificados Genéticamente , Arginina/genética , Encéfalo/patología , Señalización del Calcio , Células Cultivadas , Clonación Molecular , Electrofisiología , Potenciales Evocados/genética , Exocitosis/genética , Larva , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Unión Neuromuscular/genética , Transmisión Sináptica/genética , Proteína 25 Asociada a Sinaptosomas/genética
19.
Cell Microbiol ; 13(11): 1731-43, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21790947

RESUMEN

Tetanus and botulinum neurotoxins are di-chain proteins that cause paralysis by inhibiting neuroexocytosis. These neurotoxins enter into nerve terminals via endocytosis inside synaptic vesicles, whose acidic pH induces a structural change of the neurotoxin molecule that becomes capable of translocating its L chain into the cytosol, via a transmembrane protein-conducting channel made by the H chain. This is the least understood step of the intoxication process primarily because it takes place inside vesicles within the cytosol. In the present study, we describe how this passage was made accessible to investigation by making it to occur at the surface of neurons. The neurotoxin, bound to the plasma membrane in the cold, was exposed to a warm low pH extracellular medium and the entry of the L chain was monitored by measuring its specific metalloprotease activity with a ratiometric method. We found that the neurotoxin has to be bound to the membrane via at least two anchorage sites in order for a productive low-pH induced structural change to take place. In addition, this process can only occur if the single inter-chain disulfide bond is intact. The pH dependence of the conformational change of tetanus neurotoxin and botulinum neurotoxin B, C and D is similar and take places in the same slightly acidic range, which comprises that present inside synaptic vesicles. Based on these and previous findings, we propose a stepwise sequence of molecular events that lead from toxin binding to membrane insertion.


Asunto(s)
Toxinas Botulínicas/metabolismo , Disulfuros/análisis , Endocitosis , Neuronas/metabolismo , Toxina Tetánica/metabolismo , Animales , Toxinas Botulínicas/química , Línea Celular , Medios de Cultivo/química , Técnicas Citológicas/métodos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Radiometría/métodos , Ratas , Vesículas Sinápticas/metabolismo , Temperatura , Toxina Tetánica/química
20.
Epilepsia ; 53(7): e132-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22577757

RESUMEN

Tetanus neurotoxin (TeNT) is a metalloprotease that cleaves the synaptic protein VAMP/synaptobrevin, leading to focal epilepsy. Although this model is widely used in rats, the time course and spatial specificity of TeNT proteolytic action have not been precisely defined. Here we have studied the biochemical, electrographic, and anatomic characteristics of TeNT-induced epilepsy in mouse visual cortex (V1). We found that VAMP cleavage peaked at 10 days, was reduced at 21 days, and completely extinguished 45 days following TeNT delivery. VAMP proteolysis was restricted to the injected V1 and ipsilateral thalamus, whereas it was undetectable in other cortical areas. Electrographic epileptiform activity was evident both during and after the time window of TeNT effects, indicating development of chronic epilepsy. Anatomic analyses found no evidence for long-term tissue damage, such as neuronal loss or microglia activation. These data show that TeNT reliably induces nonlesional epilepsy in mouse cortex. Due to the excellent physiologic knowledge of the visual cortex and the availability of mouse transgenic strains, this model will be useful for examining the network and cellular alterations underlying hyperexcitability within an epileptic focus.


Asunto(s)
Epilepsia/inducido químicamente , Epilepsia/patología , Neurotoxinas/toxicidad , Toxina Tetánica/toxicidad , Corteza Visual/fisiopatología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Factores de Tiempo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Corteza Visual/efectos de los fármacos , Corteza Visual/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA