Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain ; 141(4): 1000-1016, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554219

RESUMEN

See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both. Most of the PRRT2 mutations are loss-of-function leading to haploinsufficiency and 80% of the patients carry the same frameshift mutation (c.649dupC; p.Arg217Profs*8), which leads to a premature stop codon. To model the disease and dissect the physiological role of PRRT2, we studied the phenotype of neurons differentiated from induced pluripotent stem cells from previously described heterozygous and homozygous siblings carrying the c.649dupC mutation. Single-cell patch-clamp experiments on induced pluripotent stem cell-derived neurons from homozygous patients showed increased Na+ currents that were fully rescued by expression of wild-type PRRT2. Closely similar electrophysiological features were observed in primary neurons obtained from the recently characterized PRRT2 knockout mouse. This phenotype was associated with an increased length of the axon initial segment and with markedly augmented spontaneous and evoked firing and bursting activities evaluated, at the network level, by multi-electrode array electrophysiology. Using HEK-293 cells stably expressing Nav channel subtypes, we demonstrated that the expression of PRRT2 decreases the membrane exposure and Na+ current of Nav1.2/Nav1.6, but not Nav1.1, channels. Moreover, PRRT2 directly interacted with Nav1.2/Nav1.6 channels and induced a negative shift in the voltage-dependence of inactivation and a slow-down in the recovery from inactivation. In addition, by co-immunoprecipitation assays, we showed that the PRRT2-Nav interaction also occurs in brain tissue. The study demonstrates that the lack of PRRT2 leads to a hyperactivity of voltage-dependent Na+ channels in homozygous PRRT2 knockout human and mouse neurons and that, in addition to the reported synaptic functions, PRRT2 is an important negative modulator of Nav1.2 and Nav1.6 channels. Given the predominant paroxysmal character of PRRT2-linked diseases, the disturbance in cellular excitability by lack of negative modulation of Na+ channels appears as the key pathogenetic mechanism.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Animales , Segmento Inicial del Axón/fisiología , Diferenciación Celular , Corteza Cerebral/citología , Consanguinidad , Fibroblastos/patología , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas , Potenciales de la Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.6/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Proteínas del Tejido Nervioso/genética , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Neuronas/citología , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Hermanos
2.
J Biol Chem ; 291(12): 6111-23, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26797119

RESUMEN

Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.


Asunto(s)
Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Animales , Biotinilación , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas de la Membrana/química , Ratones , Simulación de Dinámica Molecular , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Sinaptosomas/metabolismo
3.
Hum Mol Genet ; 23(1): 90-103, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23956174

RESUMEN

An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD.


Asunto(s)
Axones/metabolismo , Axones/patología , Trastornos Generalizados del Desarrollo Infantil/genética , Sinapsinas/genética , Vesículas Sinápticas/patología , Animales , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Codón sin Sentido , Femenino , Predisposición Genética a la Enfermedad , Células HeLa , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación Missense , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo
5.
Neurobiol Dis ; 64: 48-59, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24361555

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated that the activation of Group I metabotropic Glu autoreceptors, belonging to both type 1 and type 5 receptors (mGluR1 and mGluR5), at glutamatergic spinal cord nerve terminals, produces excessive Glu release in mice over-expressing human superoxide-dismutase carrying the G93A point mutation (SOD1(G93A)), a widely used animal model of human ALS. To establish whether these receptors are implicated in ALS, we generated mice expressing half dosage of mGluR1 in the SOD1(G93A) background (SOD1(G93A)Grm1(crv4/+)), by crossing the SOD1(G93A) mutant mouse with the Grm1(crv4/+) mouse, lacking mGluR1 because of a spontaneous recessive mutation. SOD1(G93A)Grm1(crv4/+) mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1(G93A) mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1(G93A)Grm1(crv4/+)compared to SOD1(G93A) mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Catalasa/metabolismo , Progresión de la Enfermedad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Metalotioneína/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Actividad Motora , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación Puntual , ARN Mensajero/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/genética , Índice de Severidad de la Enfermedad , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Análisis de Supervivencia
6.
Cereb Cortex ; 23(9): 2179-89, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22791805

RESUMEN

The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.


Asunto(s)
Encéfalo/fisiopatología , Trastornos del Movimiento/fisiopatología , Receptor del Glutamato Metabotropico 5/fisiología , Receptores de Glutamato Metabotrópico/deficiencia , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mutación , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Sinaptosomas/fisiología
7.
J Neurochem ; 121(3): 428-37, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22385043

RESUMEN

The impact of Regulated upon Activation Normal T cells Expressed and Secreted (RANTES) on the release of pre-loaded [³H]D-aspartate ([³H]D-ASP) from mouse spinal cord synaptosomes was investigated. RANTES (0.01-1 nM) failed to affect the spontaneous release, but facilitated the 15 mM K⁺-evoked overflow of [³H]D-ASP. Incubation of synaptosomes with antibodies raised against the chemokine receptor (CCR)1 and CCR5 proteins prevented RANTES-induced facilitation of glutamate exocytosis, whereas anti-CCR3 antibody was inefficacious. Accordingly, BX513 and D-Ala-peptide T-amide (DAPTA) CCR1 and CCR5 antagonists, respectively, prevented RANTES-induced effect, whereas the CCR3 antagonist SB 328437 was inactive. To compare these findings to previous results, we quantified the effects of CCR antagonists on the RANTES-induced modifications of the spontaneous and the K⁺-evoked [³H]D-ASP release in the mouse cortex. Here, CCR1 and CCR5, but not CCR3, antagonists prevented the RANTES-mediated [³H]D-ASP release, whereas RANTES-induced inhibition of the 12 mM K⁺-evoked [³H]D-ASP exocytosis was also antagonized by SB 328437. Facilitation of glutamate exocytosis in spinal cord relied on PLC-dependent mobilization of Ca²âº from IP3-sensitive stores; adenylyl cyclase was not involved. CCR1, CCR3 and CCR5 receptor proteins were present in spinal cord synaptosomal and gliosomal lysates, although RANTES-induced changes to glutamate release could not be observed in gliosomes. Our results confirm the role of RANTES as modulator of glutamate transmission.


Asunto(s)
Quimiocina CCL5/farmacología , Aminoácidos Excitadores/metabolismo , Médula Espinal/metabolismo , Animales , Ácido Aspártico/metabolismo , Western Blotting , Calcio/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Quimiocina CCL5/antagonistas & inhibidores , Quimiocinas/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Exocitosis/efectos de los fármacos , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Receptores de Quimiocina/antagonistas & inhibidores , Receptores de Quimiocina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
8.
Am J Pathol ; 178(3): 1257-69, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21356376

RESUMEN

The metabotropic glutamate (mGlu) receptor 1 (GRM1) has been shown to play an important role in neuronal cells by triggering, through calcium release from intracellular stores, various signaling pathways that finally modulate neuron excitability, synaptic plasticity, and mechanisms of feedback regulation of neurotransmitter release. Herein, we show that Grm1 is expressed in glomerular podocytes and that a glomerular phenotype is exhibited by Grm1(crv4) mice carrying a spontaneous recessive inactivating mutation of the gene. Homozygous Grm1(crv4/crv4) and, to a lesser extent, heterozygous mice show albuminuria, podocyte foot process effacement, and reduced levels of nephrin and other proteins known to contribute to the maintenance of podocyte cell structure. Overall, the present data extend the role of mGlu1 receptor to the glomerular filtration barrier. The regulatory action of mGlu1 receptor in dendritic spine morphology and in the control of glutamate release is well acknowledged in neuronal cells. Analogously, we speculate that mGlu1 receptor may regulate foot process morphology and intercellular signaling in the podocyte.


Asunto(s)
Albuminuria/patología , Glomérulos Renales/patología , Receptores de Glutamato Metabotrópico/deficiencia , Albuminuria/complicaciones , Albuminuria/metabolismo , Animales , Western Blotting , Células Cultivadas , Doxorrubicina/farmacología , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Corteza Renal/patología , Enfermedades Renales/complicaciones , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/ultraestructura , Ratones , Fenotipo , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
9.
Cell Rep ; 15(1): 117-131, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27052163

RESUMEN

Heterozygous mutations in proline-rich transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders, including epilepsy, kinesigenic dyskinesia, and migraine. Most of the mutations lead to impaired PRRT2 expression, suggesting that loss of PRRT2 function may contribute to pathogenesis. We show that PRRT2 is enriched in presynaptic terminals and that its silencing decreases the number of synapses and increases the number of docked synaptic vesicles at rest. PRRT2-silenced neurons exhibit a severe impairment of synchronous release, attributable to a sharp decrease in release probability and Ca(2+) sensitivity and associated with a marked increase of the asynchronous/synchronous release ratio. PRRT2 interacts with the synaptic proteins SNAP-25 and synaptotagmin 1/2. The results indicate that PRRT2 is intimately connected with the Ca(2+)-sensing machinery and that it plays an important role in the final steps of neurotransmitter release.


Asunto(s)
Señalización del Calcio , Exocitosis , Proteínas de la Membrana/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Animales , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos , Vesículas Sinápticas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sinaptotagminas/metabolismo
10.
Neuropharmacology ; 66: 253-63, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22634363

RESUMEN

Glutamate-mediated excitotoxicity plays a major role in ALS and reduced astrocytic glutamate transport was suggested as a cause. Based on previous work we have proposed that abnormal release may represent another source of excessive glutamate. In this line, here we studied the modulation of glutamate release in ALS by Group I metabotropic glutamate (mGlu) receptors, that comprise mGlu1 and mGlu5 members. Synaptosomes from the lumbar spinal cord of SOD1/G93A mice, a widely used murine model for human ALS, and controls were used in release, confocal or electron microscopy and Western blot experiments. Concentrations of the mGlu1/5 receptor agonist 3,5-DHPG >0.3 µM stimulated the release of [(3)H]d- aspartate, used to label the releasing pools of glutamate, both in control and SOD1/G93A mice. At variance, ≤0.3 µM 3,5-DHPG increased [(3)H]d-aspartate release in SOD1/G93A mice only. Experiments with selective antagonists indicated the involvement of both mGlu1 and mGlu5 receptors, mGlu5 being preferentially involved in the high potency effects of 3,5-DHPG. High 3,5-DHPG concentrations increased IP3 formation in both mouse strains, whereas low 3,5-DHPG did it in SOD1/G93A mice only. Release experiments confirmed that 3,5-DHPG elicited [(3)H]d-aspartate exocytosis involving intra-terminal Ca(2+) release through IP3-sensitive channels. Confocal microscopy indicated the co-existence of both receptors presynaptically in the same glutamatergic nerve terminal in SOD1/G93A mice. To conclude, activation of mGlu1/5 receptors produced abnormal glutamate release in SOD1/G93A mice, suggesting that these receptors are implicated in ALS and that selective antagonists may be predicted for new therapeutic approaches. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Autorreceptores/fisiología , Exocitosis/fisiología , Ácido Glutámico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Ácido Aspártico/metabolismo , Autorreceptores/antagonistas & inhibidores , Autorreceptores/biosíntesis , Calcio/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Exocitosis/efectos de los fármacos , Femenino , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Fosfatos de Inositol/metabolismo , Vértebras Lumbares , Masculino , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/biosíntesis , Resorcinoles/farmacología , Médula Espinal , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Sinaptosomas/efectos de los fármacos , Sinaptosomas/fisiología , Sinaptosomas/ultraestructura
11.
J Neurol ; 257(4): 598-602, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19924463

RESUMEN

The metabotropic glutamate (mGlu) 1 receptor, coded by the GRM1 gene, is involved in synaptic activities, learning and neuroprotection. Eleven different mouse Grm1 mutations, either induced or spontaneously occurring, have been reported, including one from our group. All the mutations result in a complex phenotype with ataxia and intention tremor in mice. Moreover, autoantibodies against mGlu1 receptor have been associated with paraneoplastic cerebellar ataxia in humans. In spite of the large clinical and genetic heterogeneity displayed by the inherited forms of cerebellar ataxia, forms remain with a yet unknown molecular definition. With the evidence coming out from mouse models and from paraneoplastic ataxia, it seems that GRM1 represents a good candidate gene for early-onset ataxia forms, though no GRM1 mutations have thus far been looked for. The aim of this study was to investigate the possible involvement of GRM1 in early-onset or familial forms of ataxia. We searched for gene mutations in a panel of patients with early-onset ataxia as yet molecularly undefined. No causative mutations were found, though we detected synonymous variants in the exons and changes in flanking intronic sequences which are unlikely to alter correct splicing upon bioinformatics prediction. As for other known forms of inherited ataxias, absence of mutations in GRM1 seems to suggest a relatively low frequency in cerebellar ataxias.


Asunto(s)
Ataxia Cerebelosa/genética , Receptores de Glutamato Metabotrópico/genética , Adolescente , Edad de Inicio , Ataxia Cerebelosa/fisiopatología , Niño , Análisis Mutacional de ADN/métodos , Europa (Continente) , Femenino , Humanos , Masculino , Mutación/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA