RESUMEN
Inflammation is a defence response to tissue damage that requires tight regulation in order to prevent impaired healing. Tissue-resident macrophages have a key role in tissue repair1, but the precise molecular mechanisms that regulate the balance between inflammatory and pro-repair macrophage responses during healing remain poorly understood. Here we demonstrate a major role for sensory neurons in promoting the tissue-repair function of macrophages. In a sunburn-like model of skin damage in mice, the conditional ablation of sensory neurons expressing the Gαi-interacting protein (GINIP) results in defective tissue regeneration and in dermal fibrosis. Elucidation of the underlying molecular mechanisms revealed a crucial role for the neuropeptide TAFA4, which is produced in the skin by C-low threshold mechanoreceptors-a subset of GINIP+ neurons. TAFA4 modulates the inflammatory profile of macrophages directly in vitro. In vivo studies in Tafa4-deficient mice revealed that TAFA4 promotes the production of IL-10 by dermal macrophages after UV-induced skin damage. This TAFA4-IL-10 axis also ensures the survival and maintenance of IL-10+TIM4+ dermal macrophages, reducing skin inflammation and promoting tissue regeneration. These results reveal a neuroimmune regulatory pathway driven by the neuropeptide TAFA4 that promotes the anti-inflammatory functions of macrophages and prevents fibrosis after tissue damage, and could lead to new therapeutic perspectives for inflammatory diseases.
Asunto(s)
Citocinas/metabolismo , Macrófagos/metabolismo , Regeneración , Células Receptoras Sensoriales/metabolismo , Cicatrización de Heridas , Animales , Supervivencia Celular , Citocinas/deficiencia , Modelos Animales de Enfermedad , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Fibrosis/prevención & control , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Inflamación/prevención & control , Interleucina-10/biosíntesis , Interleucina-10/metabolismo , Macrófagos/efectos de la radiación , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Receptoras Sensoriales/efectos de la radiación , Piel/patología , Piel/efectos de la radiación , Quemadura Solar/complicaciones , Quemadura Solar/etiología , Quemadura Solar/metabolismo , Quemadura Solar/patología , Rayos Ultravioleta/efectos adversosRESUMEN
To prevent ocular pathologies, new generation of dietary supplements have been commercially available. They consist of nutritional supplement mixing components known to provide antioxidative properties, such as unsaturated fatty acid, resveratrol or flavonoids. However, to date, only one preclinical study has evaluated the impact of a mixture mainly composed of those components (Nutrof Total®) on the retina and demonstrated that in vivo supplementation prevents the retina from structural and functional injuries induced by light. Considering the crucial role played by the glial Müller cells in the retina, particularly to regulate the glutamate cycle to prevent damage in oxidative stress conditions, we questioned the impact of this ocular supplement on the glutamate metabolic cycle. To this end, various molecular aspects associated with the glutamate/glutamine metabolism cycle in Müller cells were investigated on primary Müller cells cultures incubated, or not, with the commercially mix supplement before being subjected, or not, to oxidative conditions. Our results demonstrated that in vitro supplementation provides guidance of the glutamate/glutamine cycle in favor of glutamine synthesis. These results suggest that glutamine synthesis is a crucial cellular process of retinal protection against oxidative damages and could be a key step in the previous in vivo beneficial results provided by the dietary supplementation.
Asunto(s)
Antioxidantes/farmacología , Células Ependimogliales/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Glutamina/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Retina/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/farmacología , Células Ependimogliales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , RatonesRESUMEN
Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Dolor Nociceptivo/inmunología , Células Receptoras Sensoriales/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/inmunología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Infiltración Neutrófila/inmunología , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/virología , Piel/inmunología , Piel/metabolismo , Piel/virologíaRESUMEN
Pain, whether acute or persistent, is a serious medical problem worldwide. However, its management remains unsatisfactory, and new analgesic molecules are required. We show here that TAFA4 reverses inflammatory, postoperative, and spared nerve injury (SNI)-induced mechanical hypersensitivity in male and female mice. TAFA4 requires functional low-density lipoprotein receptor-related proteins (LRPs) because their inhibition by RAP (receptor-associated protein) dose-dependently abolishes its antihypersensitive actions. SNI selectively decreases A-type K+ current (IA) in spinal lamina II outer excitatory interneurons (L-IIo ExINs) and induces a concomitant increase in IA and decrease in hyperpolarization-activated current (Ih) in lamina II inner inhibitory interneurons (L-IIi InhINs). Remarkably, SNI-induced ion current alterations in both IN subtypes were rescued by TAFA4 in an LRP-dependent manner. We provide insights into the mechanism by which TAFA4 reverses injury-induced mechanical hypersensitivity by restoring normal spinal neuron activity and highlight the considerable potential of TAFA4 as a treatment for injury-induced mechanical pain.
Asunto(s)
Citocinas/metabolismo , Hiperalgesia/metabolismo , Dolor/metabolismo , Potasio/metabolismo , Receptores de LDL/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Ratones , Células RAW 264.7RESUMEN
In humans, psychological stress has been associated with a higher risk of infectious illness. However, the mechanisms by which the stress pathway interferes with host response to pathogens remain unclear. We demonstrate here a role for the ß2-adrenergic receptor (ß2-AR), which binds the stress mediators adrenaline and noradrenaline, in modulating host response to mouse cytomegalovirus (MCMV) infection. Mice treated with a ß2-AR agonist were more susceptible to MCMV infection. By contrast, ß2-AR deficiency resulted in a better clearance of the virus, less tissue damage, and greater resistance to MCMV. Mechanistically, we found a correlation between higher levels of IFN-γ production by liver natural killer (NK) cells and stronger resistance to MCMV. However, the control of NK cell IFN-γ production was not cell intrinsic, revealing a cell-extrinsic downregulation of the antiviral NK cell response by adrenergic neuroendocrine signals. This pathway reduces host immune defense, suggesting that the blockade of the ß2-AR signaling could be used to increase resistance to infectious diseases.
Asunto(s)
Infecciones por Citomegalovirus/inmunología , Regulación hacia Abajo/inmunología , Inmunidad Innata/inmunología , Receptores Adrenérgicos beta 2/inmunología , Transducción de Señal/inmunología , Animales , Epinefrina/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Norepinefrina/inmunologíaRESUMEN
Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1-/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1-/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1-/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.
RESUMEN
Visual sensory impairments are common in Mental Deficiency (MD) and Autism Spectrum Disorder (ASD). These defects are linked to cerebral dysfunction in the visual cortical area characterized by the deregulation of axon growth/guidance and dendrite spine immaturity of neurons. However, visual perception had not been addressed, although the retina is part of the central nervous system with a common embryonic origin. Therefore, we investigated retinal perception, the first event of vision, in a murine model of MD with autistic features. We document that retinal function is altered in Fmr1 KO mice, a model of human Fragile X Syndrome. Indeed, In Fmr1 KO mice had a lower retinal function characterized by a decreased photoreceptors neuron response, due to a 40% decrease in Rhodopsin content and to Rod Outer Segment destabilization. In addition, we observed an alteration of the visual signal transmission between photoreceptors and the inner retina which could be attributed to deregulations of pre- and post- synaptic proteins resulting in retinal neurons synaptic destabilization and to retinal neurons immaturity. Thus, for the first time, we demonstrated that retinal perception is altered in a murine model of MD with autistic features and that there are strong similarities between cerebral and retinal cellular and molecular defects. Our results suggest that both visual perception and integration must be taken into account in assessing visual sensory impairments in MD and ASD.