Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Comput Biol ; 13(10): e1005762, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28968396

RESUMEN

Pairwise maximum-entropy models have been used in neuroscience to predict the activity of neuronal populations, given only the time-averaged correlations of the neuron activities. This paper provides evidence that the pairwise model, applied to experimental recordings, would produce a bimodal distribution for the population-averaged activity, and for some population sizes the second mode would peak at high activities, that experimentally would be equivalent to 90% of the neuron population active within time-windows of few milliseconds. Several problems are connected with this bimodality: 1. The presence of the high-activity mode is unrealistic in view of observed neuronal activity and on neurobiological grounds. 2. Boltzmann learning becomes non-ergodic, hence the pairwise maximum-entropy distribution cannot be found: in fact, Boltzmann learning would produce an incorrect distribution; similarly, common variants of mean-field approximations also produce an incorrect distribution. 3. The Glauber dynamics associated with the model is unrealistically bistable and cannot be used to generate realistic surrogate data. This bimodality problem is first demonstrated for an experimental dataset from 159 neurons in the motor cortex of macaque monkey. Evidence is then provided that this problem affects typical neural recordings of population sizes of a couple of hundreds or more neurons. The cause of the bimodality problem is identified as the inability of standard maximum-entropy distributions with a uniform reference measure to model neuronal inhibition. To eliminate this problem a modified maximum-entropy model is presented, which reflects a basic effect of inhibition in the form of a simple but non-uniform reference measure. This model does not lead to unrealistic bimodalities, can be found with Boltzmann learning, and has an associated Glauber dynamics which incorporates a minimal asymmetric inhibition.


Asunto(s)
Biología Computacional/métodos , Entropía , Modelos Neurológicos , Corteza Motora/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Macaca
2.
Biol Cybern ; 112(1-2): 57-80, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29651582

RESUMEN

Temporally, precise correlations between simultaneously recorded neurons have been interpreted as signatures of cell assemblies, i.e., groups of neurons that form processing units. Evidence for this hypothesis was found on the level of pairwise correlations in simultaneous recordings of few neurons. Increasing the number of simultaneously recorded neurons increases the chances to detect cell assembly activity due to the larger sample size. Recent technological advances have enabled the recording of 100 or more neurons in parallel. However, these massively parallel spike train data require novel statistical tools to be analyzed for correlations, because they raise considerable combinatorial and multiple testing issues. Recently, various of such methods have started to develop. First approaches were based on population or pairwise measures of synchronization, and later led to methods for the detection of various types of higher-order synchronization and of spatio-temporal patterns. The latest techniques combine data mining with analysis of statistical significance. Here, we give a comparative overview of these methods, of their assumptions and of the types of correlations they can detect.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Humanos , Método de Montecarlo
3.
Front Neuroinform ; 17: 941696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844916

RESUMEN

Spiking neural networks (SNNs) represent the state-of-the-art approach to the biologically realistic modeling of nervous system function. The systematic calibration for multiple free model parameters is necessary to achieve robust network function and demands high computing power and large memory resources. Special requirements arise from closed-loop model simulation in virtual environments and from real-time simulation in robotic application. Here, we compare two complementary approaches to efficient large-scale and real-time SNN simulation. The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly parallel GPU-based architecture to gain simulation speed. We quantify fixed and variable simulation costs on single machines with different hardware configurations. As a benchmark model, we use a spiking cortical attractor network with a topology of densely connected excitatory and inhibitory neuron clusters with homogeneous or distributed synaptic time constants and in comparison to the random balanced network. We show that simulation time scales linearly with the simulated biological model time and, for large networks, approximately linearly with the model size as dominated by the number of synaptic connections. Additional fixed costs with GeNN are almost independent of model size, while fixed costs with NEST increase linearly with model size. We demonstrate how GeNN can be used for simulating networks with up to 3.5 · 106 neurons (> 3 · 1012synapses) on a high-end GPU, and up to 250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was achieved for networks with 100, 000 neurons. Network calibration and parameter grid search can be efficiently achieved using batch processing. We discuss the advantages and disadvantages of both approaches for different use cases.

4.
Sci Rep ; 12(1): 10421, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729203

RESUMEN

By learning, through experience, which stimuli coincide with dangers, it is possible to predict outcomes and act pre-emptively to ensure survival. In insects, this process is localized to the mushroom body (MB), the circuitry of which facilitates the coincident detection of sensory stimuli and punishing or rewarding cues and, downstream, the execution of appropriate learned behaviors. Here, we focused our attention on the mushroom body output neurons (MBONs) of the γ-lobes that act as downstream synaptic partners of the MB γ-Kenyon cells (KCs) to ask how the output of the MB γ-lobe is shaped by olfactory associative conditioning, distinguishing this from non-associative stimulus exposure effects, and without the influence of downstream modulation. This was achieved by employing a subcellularly localized calcium sensor to specifically monitor activity at MBON postsynaptic sites. Therein, we identified a robust associative modulation within only one MBON postsynaptic compartment (MBON-γ1pedc > α/ß), which displayed a suppressed postsynaptic response to an aversively paired odor. While this MBON did not undergo non-associative modulation, the reverse was true across the remainder of the γ-lobe, where general odor-evoked adaptation was observed, but no conditioned odor-specific modulation. In conclusion, associative synaptic plasticity underlying aversive olfactory learning is localized to one distinct synaptic γKC-to-γMBON connection.


Asunto(s)
Drosophila , Cuerpos Pedunculados , Animales , Drosophila/fisiología , Drosophila melanogaster/fisiología , Aprendizaje , Cuerpos Pedunculados/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Odorantes , Olfato/fisiología
5.
Materials (Basel) ; 14(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670914

RESUMEN

Coastal accretion and erosion are unavoidable processes as some coastal sediments undergo modification and stabilization. This study was conducted to investigate the geotechnical behavior of soil collected from Bagan Lalang coast and treated with lime, cement, and rice husk ash (RHA) to design a low-cost alternative mixture with environmentally friendly characteristics. Laboratory tests were carried out to analyze the physical properties of the soil (Atterberg limits and compaction properties), together with mechanical characteristics (direct shear and unconfined compressive strength (UCS) tests) to determine the effect of different ratios of stabilizer/pozzolan on the coastal soil and the optimum conditions for each mixture. Part of the purpose of this study was also to analyze the shear behavior of the coastal soil and monitor the maximum axial compressive stress that the treated specimens can bear under zero confining pressure. Compared to the natural soil, the soil treated with lime and rice husk ash (LRHA) in the ratio of 1:2 (8% lime content) showed a tremendous increase in shear stress under the normal stress of 200 kPa. The strength parameters such as the cohesion (c) and internal friction angle (ϕ) values showed a significant increase. Cohesion values increased considerably in samples cured for 90 days compared to specimens cured for 7 days with additional LRHA in the ratio of 1:2 (28%).

6.
PeerJ Comput Sci ; 3: e142, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-34722870

RESUMEN

Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA