Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Genet ; 5(11): e1000722, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19911044

RESUMEN

DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5' ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Delta and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.


Asunto(s)
Biología Computacional/métodos , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Supervivencia Celular , Proteínas Cromosómicas no Histona/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Electroforesis en Gel de Poliacrilamida , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Meiosis , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/genética , Esporas Fúngicas
2.
Sci Rep ; 6: 28032, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27346558

RESUMEN

In acute myeloid leukemia (AML), the Fms-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes. Recently, a new and recurrent juxtamembrane deletion mutation (p.Q569Vfs*2) resulting in a truncated receptor was identified. The mutated receptor is expressed on the cell surface and still binds its ligand but loses the ability to activate ERK signaling. FLT3 p.Q569fs-expressing Ba/F3 cells show no proliferation after ligand stimulation. Furthermore, coexpressed with the FLT3 wild-type (WT) receptor, the truncated receptor suppresses stimulation and activation of the WT receptor. Thus, FLT3 p.Q569Vfs*2, to our knowledge, is the first FLT3 mutation with a dominant negative effect on the WT receptor.


Asunto(s)
Genes Dominantes , Leucemia Mieloide Aguda/genética , Mutación , Tirosina Quinasa 3 Similar a fms/genética , Línea Celular Tumoral , Femenino , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Tirosina Quinasa 3 Similar a fms/metabolismo
3.
PLoS One ; 10(3): e0120925, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793878

RESUMEN

Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups.


Asunto(s)
Imagenología Tridimensional/métodos , Leucemia Mieloide Aguda/genética , Mediciones Luminiscentes/métodos , Animales , Modelos Animales de Enfermedad , Ingeniería Genética , Humanos , Ratones , Mutación/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cell Biol ; 30(7): 1570-81, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20123974

RESUMEN

Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Proteínas de Unión al ADN/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Meiosis/fisiología , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/genética , MAP Quinasa Quinasa 1/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Intercambio de Cromátides Hermanas , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo
5.
J Mol Biol ; 387(5): 1309-19, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19250940

RESUMEN

EcoP15I is a Type III restriction endonuclease requiring the interaction with two inversely oriented 5'-CAGCAG recognition sites for efficient DNA cleavage. Diverse models have been developed to explain how enzyme complexes bound to both sites move toward each other, DNA translocation, DNA looping and simple diffusion along the DNA. Conflicting data also exist about the impact of cofactor S-adenosyl-L-methionine (AdoMet), the AdoMet analogue sinefungin and the bases flanking the DNA recognition sequence on EcoP15I enzyme activity. To clarify the functional role of these questionable parameters on EcoP15I activity and to optimize the enzymatic reaction, we investigated the influence of cofactors, ionic conditions, bases flanking the recognition sequence and enzyme concentration. We found that AdoMet is not necessary for DNA cleavage. Moreover, the presence of AdoMet dramatically impaired DNA cleavage due to competing DNA methylation. Sinefungin neither had an appreciable effect on DNA cleavage by EcoP15I nor compensated for the second recognition site. Moreover, we discovered that adenine stretches on the 5' or 3' side of CAGCAG led to preferred cleavage of this site. The length of the adenine stretch was pivotal and had to be different on the two sides for most efficient cleavage. In the absence of AdoMet and with enzyme in molar excess over recognition sites, we observed minor cleavage at two communicating DNA sites simultaneously. These results could also be exploited in the high-throughput, quantitative transcriptome analysis method SuperSAGE to optimize the crucial EcoP15I digestion step.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo III/química , Desoxirribonucleasas de Localización Especificada Tipo III/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Secuencia de Bases , Sitios de Unión/genética , Metilación de ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Perfilación de la Expresión Génica , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA