Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Stroke ; 49(5): 1210-1216, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29567761

RESUMEN

BACKGROUND AND PURPOSE: The proinflammatory cytokine IL-1 (interleukin-1) has a deleterious role in cerebral ischemia, which is attenuated by IL-1 receptor antagonist (IL-1Ra). IL-1 induces peripheral inflammatory mediators, such as interleukin-6, which are associated with worse prognosis after ischemic stroke. We investigated whether subcutaneous IL-1Ra reduces the peripheral inflammatory response in acute ischemic stroke. METHODS: SCIL-STROKE (Subcutaneous Interleukin-1 Receptor Antagonist in Ischemic Stroke) was a single-center, double-blind, randomized, placebo-controlled phase 2 trial of subcutaneous IL-1Ra (100 mg administered twice daily for 3 days) in patients presenting within 5 hours of ischemic stroke onset. Randomization was stratified for baseline National Institutes of Health Stroke Scale score and thrombolysis. Measurement of plasma interleukin-6 and other peripheral inflammatory markers was undertaken at 5 time points. The primary outcome was difference in concentration of log(interleukin-6) as area under the curve to day 3. Secondary outcomes included exploratory effect of IL-1Ra on 3-month outcome with the modified Rankin Scale. RESULTS: We recruited 80 patients (mean age, 72 years; median National Institutes of Health Stroke Scale, 12) of whom 73% received intravenous thrombolysis with alteplase. IL-1Ra significantly reduced plasma interleukin-6 (P<0.001) and plasma C-reactive protein (P<0.001). IL-1Ra was well tolerated with no safety concerns. Allocation to IL-1Ra was not associated with a favorable outcome on modified Rankin Scale: odds ratio (95% confidence interval)=0.67 (0.29-1.52), P=0.34. Exploratory mediation analysis suggested that IL-1Ra improved clinical outcome by reducing inflammation, but there was a statistically significant, alternative mechanism countering this benefit. CONCLUSIONS: IL-1Ra reduced plasma inflammatory markers which are known to be associated with worse clinical outcome in ischemic stroke. Subcutaneous IL-1Ra is safe and well tolerated. Further experimental studies are required to investigate efficacy and possible interactions of IL-1Ra with thrombolysis. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: ISRCTN74236229.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fibrinolíticos/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/uso terapéutico , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Isquemia Encefálica/inmunología , Proteína C-Reactiva/inmunología , Método Doble Ciego , Femenino , Humanos , Inflamación , Inyecciones Subcutáneas , Interleucina-6/inmunología , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Accidente Cerebrovascular/inmunología , Terapia Trombolítica , Resultado del Tratamiento
2.
Eur J Immunol ; 46(4): 912-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26692072

RESUMEN

IL-1 is a key cytokine known to drive chronic inflammation and to regulate many physiological, immunological, and neuroimmunological responses via actions on diverse cell types of the body. To determine the mechanisms of IL-1 actions as part of the inflammatory response in vivo, we generated a conditional IL-1 receptor 1 (IL-1R1) mouse mutant using the Cre/LoxP system (IL-1R1(fl/fl) ). In the mutant generated, exon 5, which encodes part of the extracellular-binding region of the receptor, is flanked by LoxP sites, thereby inactivating the two previously described functional IL-1R1 gene transcripts after Cre-mediated recombination. Using keratin 14-Cre driver mice, new IL-1R1 deficient (-/-) mice were subsequently generated, in which all signaling IL-1 receptor isoforms are deleted ubiquitously. Furthermore, using vav-iCre driver mice, we deleted IL-1 receptor isoforms in the hematopoietic system. In these mice, we show that both the IL-17 and IL-22 cytokine response is reduced, when mice are challenged by the helminth Trichuris muris. We are currently crossing IL-1R1(fl/fl) mice with different Cre-expressing mice in order to study mechanisms of acute and chronic inflammatory diseases.


Asunto(s)
Inflamación/inmunología , Interleucina-17/biosíntesis , Interleucinas/biosíntesis , Receptores Tipo I de Interleucina-1/genética , Trichuris/inmunología , Animales , Interleucina-17/inmunología , Interleucinas/inmunología , Queratina-14/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Tipo I de Interleucina-1/inmunología , Interleucina-22
3.
Brain Behav Immun ; 61: 117-126, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27856349

RESUMEN

Neuroprotective strategies for ischemic stroke have failed to translate from bench to bedside, possibly due to the lack of consideration of key clinical co-morbidities. Stroke and co-morbidities are associated with raised levels of the pro-inflammatory cytokine interleukin-1 (IL-1). Inhibition of IL-1 by the administration of interleukin-1 receptor antagonist (IL-1Ra) has shown to be neuroprotective after experimental cerebral ischemia. Stroke can also trigger a robust neuroreparative response following injury, yet many of these new born neurons fail to survive or integrate into pre-existing circuits. Thus, we explore here effects of IL-1Ra on post-stroke neurogenesis in young and aged/co-morbid rats. Aged lean, aged Corpulent (a model of atherosclerosis, obesity and insulin resistance) and young Wistar male rats were exposed to transient cerebral ischemia, received subcutaneous IL-1Ra 3 and 6h during reperfusion, and effects on stroke outcome and neurogenesis were analyzed. Our results show that administration of IL-1Ra improves stroke outcome in both young and aged/co-morbid rats. Furthermore, IL-1Ra not only increases stem cell proliferation, but also significantly enhances neuroblast migration and the number of newly born neurons after cerebral ischemia. Overall, our data demonstrate that systemic administration of IL-1Ra improves outcome and promotes neurogenesis after experimental stroke, further highlighting the therapeutic potential of this clinically approved drug.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Neurogénesis/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Movimiento Celular/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Masculino , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
4.
Stroke ; 47(5): 1312-1318, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27032444

RESUMEN

BACKGROUND AND PURPOSE: The debate over the fact that experimental drugs proposed for the treatment of stroke fail in the translation to the clinical situation has attracted considerable attention in the literature. In this context, we present a retrospective pooled analysis of a large data set from preclinical studies, to examine the effects of early versus late administration of intravenous recombinant tissue-type plasminogen activator. METHODS: We collected data from 26 individual studies from 9 international centers (13 researchers; 716 animals) that compared recombinant tissue-type plasminogen activator with controls, in a unique mouse model of thromboembolic stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (<3 hours) versus late (≥3 hours) drug administration. Final infarct volumes, assessed by histology or magnetic resonance imaging, were compared in each study, and the absolute differences were pooled in a random-effect meta-analysis. The influence of time of administration was tested. RESULTS: When compared with saline controls, early recombinant tissue-type plasminogen activator administration was associated with a significant benefit (absolute difference, -6.63 mm(3); 95% confidence interval, -9.08 to -4.17; I(2)=76%), whereas late recombinant tissue-type plasminogen activator treatment showed a deleterious effect (+5.06 mm(3); 95% confidence interval, +2.78 to +7.34; I(2)=42%; Pint<0.00001). Results remained unchanged after subgroup analyses. CONCLUSIONS: Our results provide the basis needed for the design of future preclinical studies on recanalization therapies using this model of thromboembolic stroke in mice. The power analysis reveals that a multicenter trial would require 123 animals per group instead of 40 for a single-center trial.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fibrinolíticos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Activador de Tejido Plasminógeno/farmacología , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Fibrinolíticos/administración & dosificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Accidente Cerebrovascular/patología , Activador de Tejido Plasminógeno/administración & dosificación
5.
Eur J Immunol ; 45(2): 525-30, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367678

RESUMEN

The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders.


Asunto(s)
Encéfalo/inmunología , Encefalitis/inmunología , Interleucina-1alfa/genética , Interleucina-1beta/genética , Microglía/inmunología , Transducción de Señal/inmunología , Animales , Encéfalo/patología , Encefalitis/inducido químicamente , Encefalitis/genética , Encefalitis/patología , Regulación de la Expresión Génica , Inmunidad Innata , Inyecciones Intraventriculares , Interleucina-1alfa/deficiencia , Interleucina-1alfa/inmunología , Interleucina-1beta/deficiencia , Interleucina-1beta/inmunología , Lipopolisacáridos , Pulmón/inmunología , Ratones , Ratones Noqueados , Microglía/patología , Infiltración Neutrófila , Neutrófilos/inmunología , Neutrófilos/patología , Especificidad de Órganos , Peritoneo/inmunología
6.
Nat Rev Immunol ; 5(8): 629-40, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16034365

RESUMEN

Interleukin-1 is a pro-inflammatory cytokine that has numerous biological effects, including activation of many inflammatory processes (through activation of T cells, for example), induction of expression of acute-phase proteins, an important function in neuroimmune responses and direct effects on the brain itself. There is now extensive evidence to support the direct involvement of interleukin-1 in the neuronal injury that occurs in both acute and chronic neurodegenerative disorders. This article discusses the key evidence of a role for interleukin-1 in acute neurodegeneration - for example, stroke and brain trauma - and provides a rationale for targeting the interleukin-1 system as a therapeutic strategy.


Asunto(s)
Interleucina-1/fisiología , Enfermedades Neurodegenerativas/inmunología , Neuronas/patología , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/patología , Humanos , Interleucina-1/genética , Interleucina-1/farmacología , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos
7.
J Biol Chem ; 289(23): 15942-50, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24790078

RESUMEN

The cytokine interleukin-1 (IL-1) has two main pro-inflammatory forms, IL-1α and IL-1ß, which are central to host responses to infection and to damaging sterile inflammation. Processing of IL-1 precursor proteins to active cytokines commonly occurs through activation of proteases, notably caspases and calpains. These proteases are instrumental in cell death, and inflammation and cell death are closely associated, hence we sought to determine the impact of cell death pathways on IL-1 processing and release. We discovered that apoptotic regulation of caspase-8 specifically induced the processing and release of IL-1ß. Conversely, necroptosis caused the processing and release of IL-1α, and this was independent of IL-1ß processing and release. These data suggest that the mechanism through which an IL-1-expressing cell dies dictates the nature of the inflammatory mechanism that follows. These insights may allow modification of inflammation through the selective targeting of cell death mechanisms during disease.


Asunto(s)
Apoptosis , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Animales , Calcio/metabolismo , Calpaína/metabolismo , Caspasa 8/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Necrosis
8.
Ann Neurol ; 75(5): 670-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24644058

RESUMEN

OBJECTIVE: Bacterial infection contributes to diverse noninfectious diseases and worsens outcome after stroke. Streptococcus pneumoniae, the most common infection in patients at risk of stroke, is a major cause of prolonged hospitalization and death of stroke patients, but how infection impacts clinical outcome is not known. METHODS: We induced sustained pulmonary infection by a human S. pneumoniae isolate in naive and comorbid rodents to investigate the effect of infection on vascular and inflammatory responses prior to and after cerebral ischemia. RESULTS: S. pneumoniae infection triggered atherogenesis, led to systemic induction of interleukin (IL) 1, and profoundly exacerbated (50-90%) ischemic brain injury in rats and mice, a response that was more severe in combination with old age and atherosclerosis. Systemic blockade of IL-1 with IL-1 receptor antagonist (IL-1Ra) fully reversed infection-induced exacerbation of brain injury and functional impairment caused by cerebral ischemia. We show that infection-induced systemic inflammation mediates its effects via increasing platelet activation and microvascular coagulation in the brain after cerebral ischemia, as confirmed by reduced brain injury in response to blockade of platelet glycoprotein (GP) Ibα. IL-1 and platelet-mediated signals converge on microglia, as both IL-1Ra and GPIbα blockade reversed the production of IL-1α by microglia in response to cerebral ischemia in infected animals. INTERPRETATION: S. pneumoniae infection augments atherosclerosis and exacerbates ischemic brain injury via IL-1 and platelet-mediated systemic inflammation. These mechanisms may contribute to diverse cardio- and cerebrovascular pathologies in humans.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Interleucina-1/efectos adversos , Complejo GPIb-IX de Glicoproteína Plaquetaria/efectos adversos , Infecciones Estreptocócicas/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus pneumoniae , Animales , Isquemia Encefálica/microbiología , Progresión de la Enfermedad , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Inflamación/patología , Interleucina-1/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/microbiología , Microglía/patología , Activación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/antagonistas & inhibidores , Complejo GPIb-IX de Glicoproteína Plaquetaria/fisiología , Ratas , Ratas Wistar , Infecciones Estreptocócicas/microbiología
9.
Exp Physiol ; 100(12): 1488-94, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26096539

RESUMEN

NEW FINDINGS: What is the topic of this review? This review discusses the latest findings on the contribution of inflammation to brain injury, how inflammation is a therapeutic target, and details of recent and forthcoming clinical studies. What advances does it highlight? Here we highlight recent advances on the role and regulation of inflammasomes, and the latest clinical progress in targeting inflammation. Acute brain injury is one of the leading causes of mortality and disability worldwide. Despite this, treatments for acute brain injuries are limited, and there remains a massive unmet clinical need. Inflammation has emerged as a major contributor to non-communicable diseases, and there is now substantial and growing evidence that inflammation, driven by the cytokine interleukin-1 (IL-1), worsens acute brain injury. Interleukin-1 is regulated by large, multimolecular complexes called inflammasomes. Here, we discuss the latest research on the regulation of inflammasomes and IL-1 in the brain, preclinical efforts to establish the IL-1 system as a therapeutic target, and the promise of recent and future clinical studies on blocking the action of IL-1 for the treatment of brain injury.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Interleucina-1/farmacología , Interleucina-1/uso terapéutico , Animales , Humanos , Inflamasomas/efectos de los fármacos , Inflamación/tratamiento farmacológico
10.
J Neuroinflammation ; 11: 1, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24383930

RESUMEN

BACKGROUND: Interleukin-1 (IL-1) is a key mediator of ischaemic brain injury induced by stroke and subarachnoid haemorrhage (SAH). IL-1 receptor antagonist (IL-1Ra) limits brain injury in experimental stroke and reduces plasma inflammatory mediators associated with poor outcome in ischaemic stroke patients. Intravenous (IV) IL-1Ra crosses the blood-brain barrier (BBB) in patients with SAH, to achieve cerebrospinal fluid (CSF) concentrations that are neuroprotective in rats. METHODS: A small phase II, double-blind, randomised controlled study was carried out across two UK neurosurgical centres with the aim of recruiting 32 patients. Adult patients with aneurysmal SAH, requiring external ventricular drainage (EVD) within 72 hours of ictus, were eligible. Patients were randomised to receive IL-1Ra (500 mg bolus, then a 10 mg/kg/hr infusion for 24 hours) or placebo. Serial samples of CSF and plasma were taken and analysed for inflammatory mediators, with change in CSF IL-6 between 6 and 24 hours as the primary outcome measure. RESULTS: Six patients received IL-1Ra and seven received placebo. Concentrations of IL-6 in CSF and plasma were reduced by one standard deviation in the IL-1Ra group compared to the placebo group, between 6 and 24 hours, as predicted by the power calculation. This did not reach statistical significance (P = 0.08 and P = 0.06, respectively), since recruitment did not reach the target figure of 32. No adverse or serious adverse events reported were attributable to IL-1Ra. CONCLUSIONS: IL-1Ra appears safe in SAH patients. The concentration of IL-6 was lowered to the degree expected, in both CSF and plasma for patients treated with IL-1Ra.


Asunto(s)
Citocinas/líquido cefalorraquídeo , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Hemorragia Subaracnoidea/líquido cefalorraquídeo , Hemorragia Subaracnoidea/tratamiento farmacológico , Administración Intravenosa , Adulto , Anciano , Área Bajo la Curva , Citocinas/sangre , Método Doble Ciego , Ensayo de Inmunoadsorción Enzimática , Femenino , Escala de Coma de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Hemorragia Subaracnoidea/sangre , Factores de Tiempo
11.
J Immunol ; 189(1): 381-92, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22661091

RESUMEN

Cerebrovascular inflammation contributes to diverse CNS disorders through mechanisms that are incompletely understood. The recruitment of neutrophils to the brain can contribute to neurotoxicity, particularly during acute brain injuries, such as cerebral ischemia, trauma, and seizures. However, the regulatory and effector mechanisms that underlie neutrophil-mediated neurotoxicity are poorly understood. In this study, we show that mouse neutrophils are not inherently toxic to neurons but that transendothelial migration across IL-1-stimulated brain endothelium triggers neutrophils to acquire a neurotoxic phenotype that causes the rapid death of cultured neurons. Neurotoxicity was induced by the addition of transmigrated neutrophils or conditioned medium, taken from transmigrated neutrophils, to neurons and was partially mediated by excitotoxic mechanisms and soluble proteins. Transmigrated neutrophils also released decondensed DNA associated with proteases, which are known as neutrophil extracellular traps. The blockade of histone-DNA complexes attenuated transmigrated neutrophil-induced neuronal death, whereas the inhibition of key neutrophil proteases in the presence of transmigrated neutrophils rescued neuronal viability. We also show that neutrophil recruitment in the brain is IL-1 dependent, and release of proteases and decondensed DNA from recruited neutrophils in the brain occurs in several in vivo experimental models of neuroinflammation. These data reveal new regulatory and effector mechanisms of neutrophil-mediated neurotoxicity (i.e., the release of proteases and decondensed DNA triggered by phenotypic transformation during cerebrovascular transmigration). Such mechanisms have important implications for neuroinflammatory disorders, notably in the development of antileukocyte therapies.


Asunto(s)
Circulación Cerebrovascular/inmunología , ADN Mitocondrial/antagonistas & inhibidores , Neuronas/enzimología , Neuronas/patología , Infiltración Neutrófila/inmunología , Péptido Hidrolasas/metabolismo , Animales , Células Cultivadas , Circulación Cerebrovascular/genética , Medios de Cultivo Condicionados/farmacología , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Espacio Extracelular/enzimología , Espacio Extracelular/genética , Espacio Extracelular/inmunología , Inmunofenotipificación , Interleucina-1alfa/deficiencia , Interleucina-1alfa/fisiología , Interleucina-1beta/deficiencia , Interleucina-1beta/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/inmunología , Infiltración Neutrófila/genética , Péptido Hidrolasas/genética , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
12.
Glia ; 61(5): 813-24, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23404620

RESUMEN

Macrophage can adopt several phenotypes, process call polarization, which is crucial for shaping inflammatory responses to injury. It is not known if microglia, a resident brain macrophage population, polarizes in a similar way, and whether specific microglial phenotypes modulate cell death in response to brain injury. In this study, we show that both BV2-microglia and mouse bone marrow derived macrophages (BMDMs) were able to adopt different phenotypes after LPS (M1) or IL-4 (M2) treatment in vitro, but regulated cell death differently when added to mouse organotypic hippocampal brain slices. BMDMs induced cell death when added to control slices and exacerbated damage when combined with oxygen-glucose deprivation (OGD), independently of their phenotype. In contrast, vehicle- and M2-BV2-microglia were protective against OGD-induced death. Direct treatment of brain slices with IL-4 (without cell addition) was protective against OGD and induced an M2 phenotype in the slice. In vivo, intracerebral injection of LPS or IL-4 in mice induced microglial phenotypes similar to the phenotypes observed in brain slices and in cultured cells. After injury induced by middle cerebral artery occlusion, microglial cells did not adopt classical M1/M2 phenotypes, suggesting that another subtype of regulatory phenotype was induced. This study highlights functional differences between macrophages and microglia, in response to brain injury with fundamentally different outcomes, even if both populations were able to adopt M1 or M2 phenotypes. These data suggest that macrophages infiltrating the brain from the periphery after an injury may be cytotoxic, independently of their phenotype, while microglia may be protective.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Glucosa/deficiencia , Hipocampo/patología , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Animales , Muerte Celular/fisiología , Hipoxia de la Célula/fisiología , Células Cultivadas , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Especificidad de Órganos/fisiología
13.
Nat Chem Biol ; 7(12): 902-8, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020553

RESUMEN

The control of biochemical fluxes is distributed, and to perturb complex intracellular networks effectively it is often necessary to modulate several steps simultaneously. However, the number of possible permutations leads to a combinatorial explosion in the number of experiments that would have to be performed in a complete analysis. We used a multiobjective evolutionary algorithm to optimize reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-1ß expression. The evolutionary algorithm converged on excellent solutions within 11 generations, during which we studied just 550 combinations out of the potential search space of ~9 billion. The top five reagents with the greatest contribution to combinatorial effects throughout the evolutionary algorithm were then optimized pairwise. A p38 MAPK inhibitor together with either an inhibitor of IκB kinase or a chelator of poorly liganded iron yielded synergistic inhibition of macrophage IL-1ß expression. Evolutionary searches provide a powerful and general approach to the discovery of new combinations of pharmacological agents with therapeutic indices potentially greater than those of single drugs.


Asunto(s)
Algoritmos , Antiinflamatorios no Esteroideos/farmacología , Simulación por Computador , Descubrimiento de Drogas/métodos , Antiinflamatorios no Esteroideos/química , Muerte Celular/efectos de los fármacos , Biología Computacional/métodos , Relación Dosis-Respuesta a Droga , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/biosíntesis , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
14.
J Neuroinflammation ; 9: 230, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23034047

RESUMEN

BACKGROUND: The innate immune response in the brain is initiated by pathogen-associated molecular patterns (PAMPS) or danger-associated molecular patterns (DAMPS) produced in response to central nervous system (CNS) infection or injury. These molecules activate members of the Toll-like receptor (TLR) family, of which TLR4 is the receptor for bacterial lipopolysaccharide (LPS). Although neurons have been reported to express TLR4, the function of TLR4 activation in neurons remains unknown. METHODS: TLR4 mRNA expression in primary mouse glial and neuronal cultures was assessed by RT-PCR. Mouse mixed glial, neuronal or endothelial cell cultures were treated with LPS in the absence or the presence of a TLR4 specific antagonist (VIPER) or a specific JNK inhibitor (SP600125). Expression of inflammatory mediators was assayed by cytometric bead array (CBA) and ELISA. Activation of extracellular-signal regulated kinase 1/2 (ERK1/2), p38, c-Jun-N-terminal kinase (JNK) and c-Jun was assessed by Western blot. The effect of conditioned media of untreated- versus LPS-treated glial or neuronal cultures on endothelial activation was assessed by neutrophil transmigration assay, and immunocytochemistry and ELISA were used to measure expression of intercellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1). RESULTS: LPS induces strong release of the chemokines RANTES and CXCL1 (KC), tumor necrosis factor-α (TNFα) and IL-6 in primary mouse neuronal cultures. In contrast, LPS induced release of IL-1α, IL-1ß and granulocyte-colony stimulating factor (G-CSF) in mixed glial, but not in neuronal cultures. LPS-induced neuronal KC expression and release were completely blocked by VIPER. In glial cultures, LPS induced activation of ERK1/2, p38 and JNK. In contrast, in neuronal cultures, LPS activated JNK but not ERK1/2 or p38, and the specific JNK inhibitor SP600125 significantly blocked LPS-induced KC expression and release. Finally, conditioned medium of LPS-treated neuronal cultures induced strong expression of ICAM-1 and VCAM-1 on endothelial cells, and induced infiltration of neutrophils across the endothelial monolayer, which was inhibited by VIPER. CONCLUSION: These data demonstrate for the first time that neurons can play a role as key sensors of infection to initiate CNS inflammation.


Asunto(s)
Encéfalo/metabolismo , Células Endoteliales/metabolismo , Enfermedades del Sistema Inmune/metabolismo , Trastornos Leucocíticos/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/fisiología , Migración Transendotelial y Transepitelial/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Células Cultivadas , Técnicas de Cocultivo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL
15.
J Neuroinflammation ; 9: 255, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23176037

RESUMEN

BACKGROUND: Cytokines and cytokine receptor concentrations increase in plasma and cerebrospinal fluid (CSF) of patients following subarachnoid haemorrhage (SAH). The relationship between plasma and CSF cytokines, and factors affecting this, are not clear. METHODS: To help define the relationship, paired plasma and cerebrospinal fluid (CSF) samples were collected from patients subject to ventriculostomy. Concentrations of key inflammatory cytokines, interleukin (IL)-1ß, IL-1 receptor antagonist (IL-1Ra), IL-1 receptor 2, IL-6, IL-8, IL-10, tumour necrosis factor (TNF)-α, and TNF receptors (TNF-R) 1 and 2 were determined by immunoassay of CSF and plasma from 21 patients, where samples were available at three or more time points. RESULTS: Plasma concentrations of IL-1ß, IL-1Ra, IL-10, TNF-α and TNF-R1 were similar to those in CSF. Plasma TNF-R2 and IL-1R2 concentrations were higher than in CSF. Concentrations of IL-8 and IL-6 in CSF were approximately10 to 1,000-fold higher than in plasma. There was a weak correlation between CSF and plasma IL-8 concentrations (r = 0.26), but no correlation for IL-6. Differences between the central and peripheral pattern of IL-6 were associated with episodes of ventriculostomy-related infection (VRI). A VRI was associated with CSF IL-6 >10,000 pg/mL (P = 0.0002), although peripheral infection was not significantly associated with plasma IL-6. CONCLUSIONS: These data suggest that plasma cytokine concentrations cannot be used to identify relative changes in the CSF, but that measurement of CSF IL-6 could provide a useful marker of VRI.


Asunto(s)
Citocinas/sangre , Citocinas/líquido cefalorraquídeo , Infecciones/diagnóstico , Receptores de Citocinas/metabolismo , Hemorragia Subaracnoidea/sangre , Hemorragia Subaracnoidea/líquido cefalorraquídeo , Adulto , Anciano , Femenino , Humanos , Infecciones/sangre , Infecciones/líquido cefalorraquídeo , Infecciones/etiología , Masculino , Persona de Mediana Edad , Ventriculostomía/efectos adversos , Ventriculostomía/métodos
16.
Blood ; 115(17): 3632-9, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20200351

RESUMEN

White blood cell infiltration across an activated brain endothelium contributes to neurologic disease, including cerebral ischemia and multiple sclerosis. Identifying mechanisms of cerebrovascular activation is therefore critical to our understanding of brain disease. Platelet accumulation in microvessels of ischemic mouse brain was associated with endothelial activation in vivo. Mouse platelets expressed interleukin-1alpha (IL-1alpha), but not IL-1beta, induced endothelial cell adhesion molecule expression (ICAM-1 and VCAM-1), and enhanced the release of CXC chemokine CXCL1 when incubated with primary cultures of brain endothelial cells from wild-type or IL-1alpha/beta-deficient mice. A neutralizing antibody to IL-1alpha (but not IL-1beta) or application of IL-1 receptor antagonist inhibited platelet-induced endothelial activation by more than 90%. Platelets from IL-1alpha/beta-deficient mice did not induce expression of adhesion molecules in cerebrovascular endothelial cells and did not promote CXCL1 release in vitro. Conditioned medium from activated platelets induced an IL-1alpha-dependent activation of mouse brain endothelial cells and supported the transendothelial migration of neutrophils in vitro. Thus, we have identified platelets as a key source of IL-1alpha and propose that platelet activation of brain endothelium via IL-1alpha is a critical step for the entry of white blood cells, major contributors to inflammation-mediated injury in the brain.


Asunto(s)
Plaquetas/metabolismo , Isquemia Encefálica/metabolismo , Encefalitis/metabolismo , Endotelio Vascular/metabolismo , Interleucina-1alfa/metabolismo , Activación Plaquetaria , Animales , Plaquetas/inmunología , Isquemia Encefálica/genética , Isquemia Encefálica/inmunología , Isquemia Encefálica/patología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Movimiento Celular/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Quimiocina CXCL1/metabolismo , Encefalitis/genética , Encefalitis/inmunología , Encefalitis/patología , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Molécula 1 de Adhesión Intercelular/biosíntesis , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Proteína Antagonista del Receptor de Interleucina 1/genética , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Ratones , Ratones Noqueados , Infiltración Neutrófila/efectos de los fármacos , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
17.
Cytokine ; 58(3): 384-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22445501

RESUMEN

INTRODUCTION: Infections are common following stroke and adversely affect outcome. Cellular immune suppression associated with acute stroke may increase susceptibility to infection. Cytokines are important contributors to both stroke pathology and the response to infection. Since interleukin (IL)-1 blockade is a candidate treatment for cerebral ischemia, we examined whether administration of interleukin-1 receptor antagonist (IL-1Ra) to patients with acute stroke affected innate cellular immune responses in a phase II placebo-controlled trial. METHODS: Venous blood samples were taken prior to treatment initiation, at 24h and 5 to 7d. Blood was also drawn from stroke-free controls. Lipopolysaccharide (LPS) stimulation of whole-blood cultures assessed the potential of leukocytes to produce cytokines. RESULTS: Induction of tumor necrosis factor (TNF)-α, IL-1ß, IL-6, IL-8 and IL-10 by LPS was significantly reduced in patients at admission, compared to controls. At 24h, cytokine induction remained suppressed in the placebo group. In contrast, for patients treated with IL-1Ra, induction of TNF-α, IL-6 and IL-10 was similar to controls and IL-1ß induction was significantly greater than in the placebo group. At 5 to 7d, TNF-α and IL-1ß induction remained suppressed only in the placebo group (p<0.05). Plasma cortisol concentrations, elevated at admission in patients compared to controls, were substantially reduced at 24h in the patients receiving IL-1Ra (p<0.05) and inversely correlated (p<0.001) with either TNF-α (r=-0.71) or IL-1ß induction (r=-0.67) at admission. CONCLUSION: Treatment with IL-1Ra reverses peripheral innate immune suppression in the acute phase of stroke, which is associated with attenuated cortisol production. The mechanisms underlying these observations, including the potential impact of IL-1Ra on stroke severity and the clinical significance of immune suppression, require further evaluation in larger studies.


Asunto(s)
Inmunidad Celular/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Accidente Cerebrovascular/inmunología , Estudios de Casos y Controles , Citocinas/biosíntesis , Citocinas/sangre , Método Doble Ciego , Humanos , Hidrocortisona/sangre , Placebos
18.
Traffic ; 10(1): 16-25, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18939951

RESUMEN

Pro-inflammatory members of the interleukin-1 (IL-1) family of cytokines (IL-1alpha and beta) are important mediators of host defense responses to infection but can also exacerbate the damaging inflammation that contributes to major human diseases. IL-1alpha and beta are produced by cells of the innate immune system, such as macrophages, and act largely after their secretion by binding to the type I IL-1 receptor on responsive cells. There is evidence that IL-1alpha is also a nuclear protein that can act intracellularly. In this study, we report that both IL-1alpha and IL-1beta produced by microglia (central nervous system macrophages) in response to an inflammatory challenge are distributed between the cytosol and the nucleus. Using IL-1-beta-galactosidase and IL-1-green fluorescent protein chimeras (analyzed by fluorescence recovery after photobleaching), we demonstrate that nuclear import of IL-1alpha is exclusively active, requiring a nuclear localization sequence and Ran, while IL-1beta nuclear import is entirely passive. These data provide valuable insights into the dynamic regulation of intracellular cytokine trafficking.


Asunto(s)
Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Interleucina-1alfa/genética , Interleucina-1beta/genética , Ratones , Microglía/metabolismo , Datos de Secuencia Molecular , Señales de Localización Nuclear , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
20.
Brain Behav Immun ; 25(6): 1113-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21356305

RESUMEN

Chronic systemic inflammatory conditions, such as atherosclerosis, diabetes and obesity are associated with increased risk of stroke, which suggests that systemic inflammation may contribute to the development of stroke in humans. The hypothesis that systemic inflammation may induce brain pathology can be tested in animals, and this was the key objective of the present study. First, we assessed inflammatory changes in the brain in rodent models of chronic, systemic inflammation. PET imaging revealed increased microglia activation in the brain of JCR-LA (corpulent) rats, which develop atherosclerosis and obesity, compared to the control lean strain. Immunostaining against Iba1 confirmed reactive microgliosis in these animals. An atherogenic diet in apolipoprotein E knock-out (ApoE(-/-)) mice induced microglial activation in the brain parenchyma within 8 weeks and increased expression of vascular adhesion molecules. Focal lipid deposition and neuroinflammation in periventricular and cortical areas and profound recruitment of activated myeloid phagocytes, T cells and granulocytes into the choroid plexus were also observed. In a small, preliminary study, patients at risk of stroke (multiple risk factors for stroke, with chronically elevated C-reactive protein, but negative MRI for brain pathology) exhibited increased inflammation in the brain, as indicated by PET imaging. These findings show that brain inflammation occurs in animals, and tentatively in humans, harbouring risk factors for stroke associated with elevated systemic inflammation. Thus a "primed" inflammatory environment in the brain may exist in individuals at risk of stroke and this can be adequately recapitulated in appropriate co-morbid animal models.


Asunto(s)
Encefalitis/epidemiología , Accidente Cerebrovascular/epidemiología , Anciano , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/epidemiología , Aterosclerosis/etiología , Aterosclerosis/patología , Química Encefálica , Proteína C-Reactiva/análisis , Comorbilidad , Dieta Aterogénica , Encefalitis/diagnóstico por imagen , Encefalitis/patología , Femenino , Humanos , Interleucina-6/sangre , Lípidos/análisis , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Persona de Mediana Edad , Obesidad/epidemiología , Obesidad/genética , Fagocitos/patología , Tomografía de Emisión de Positrones , Ratas , Ratas Mutantes , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA