Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013458

RESUMEN

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Estudios de Asociación Genética , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Fenotipo , Humanos , N-Metiltransferasa de Histona-Lisina/genética , Anomalías Craneofaciales/genética , Discapacidad Intelectual/genética , Cromosomas Humanos Par 9/genética , Metilación de ADN/genética , Femenino , Masculino , Niño , Preescolar , Antígenos de Histocompatibilidad/genética , Adolescente , Cardiopatías Congénitas/genética , Haploinsuficiencia/genética , Mutación
2.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013459

RESUMEN

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Enfermedades Vestibulares , Humanos , Anomalías Múltiples/genética , Enfermedades Vestibulares/genética , Discapacidad Intelectual/genética , Cara/anomalías , Cara/patología , Proteínas de Unión al ADN/genética , Masculino , Femenino , Enfermedades Hematológicas/genética , Trastornos del Neurodesarrollo/genética , Anomalías Craneofaciales/genética , Cromosomas Humanos Par 9/genética , Niño , Metilación de ADN/genética , Preescolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricosis/genética , Mutación , Insuficiencia de Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Cardiopatías Congénitas
3.
Am J Hum Genet ; 110(6): 963-978, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196654

RESUMEN

De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Animales , Facies , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Drosophila , Discapacidad Intelectual/patología , Histona Demetilasas con Dominio de Jumonji/genética
4.
J Med Genet ; 61(6): 578-585, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38290825

RESUMEN

OBJECTIVES: Speech and language impairments are core features of the neurodevelopmental genetic condition Kleefstra syndrome. Communication has not been systematically examined to guide intervention recommendations. We define the speech, language and cognitive phenotypic spectrum in a large cohort of individuals with Kleefstra syndrome. METHOD: 103 individuals with Kleefstra syndrome (40 males, median age 9.5 years, range 1-43 years) with pathogenic variants (52 9q34.3 deletions, 50 intragenic variants, 1 balanced translocation) were included. Speech, language and non-verbal communication were assessed. Cognitive, health and neurodevelopmental data were obtained. RESULTS: The cognitive spectrum ranged from average intelligence (12/79, 15%) to severe intellectual disability (12/79, 15%). Language ability also ranged from average intelligence (10/90, 11%) to severe intellectual disability (53/90, 59%). Speech disorders occurred in 48/49 (98%) verbal individuals and even occurred alongside average language and cognition. Developmental regression occurred in 11/80 (14%) individuals across motor, language and psychosocial domains. Communication aids, such as sign and speech-generating devices, were crucial for 61/103 (59%) individuals including those who were minimally verbal, had a speech disorder or following regression. CONCLUSIONS: The speech, language and cognitive profile of Kleefstra syndrome is broad, ranging from severe impairment to average ability. Genotype and age do not explain the phenotypic variability. Early access to communication aids may improve communication and quality of life.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 9 , Cognición , Anomalías Craneofaciales , Discapacidad Intelectual , Fenotipo , Humanos , Masculino , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Niño , Adolescente , Femenino , Adulto , Preescolar , Cromosomas Humanos Par 9/genética , Adulto Joven , Lactante , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Habla , Trastornos del Habla/genética , Trastornos del Habla/fisiopatología , Lenguaje , Inteligencia/genética , Trastornos del Lenguaje/genética , Trastornos del Lenguaje/fisiopatología , Cardiopatías Congénitas
5.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33909990

RESUMEN

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Asunto(s)
Anomalías Múltiples/patología , Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/patología , Metilación de ADN , Epigénesis Genética , Trastornos del Crecimiento/patología , Defectos del Tabique Interventricular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo , Anomalías Múltiples/genética , Estudios de Casos y Controles , Estudios de Cohortes , Anomalías Craneofaciales/genética , Femenino , Predisposición Genética a la Enfermedad , Trastornos del Crecimiento/genética , Defectos del Tabique Interventricular/genética , Humanos , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/genética
6.
Clin Genet ; 105(6): 655-660, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38384171

RESUMEN

Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome.


Asunto(s)
Deleción Cromosómica , Duplicación Cromosómica , Cromosomas Humanos Par 9 , Metilación de ADN , Cardiopatías Congénitas , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Cromosomas Humanos Par 9/genética , Masculino , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Duplicación Cromosómica/genética , Niño , Preescolar , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Adolescente , Fenotipo
7.
Nucleic Acids Res ; 50(17): e97, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35713566

RESUMEN

De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160$ \times$164 resolution images. DeNovoCNN was trained on DNMs of 5616 whole exome sequencing (WES) trios achieving total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust against different exome sequencing and analyses approaches, thereby allowing the application on other datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.


Asunto(s)
Aprendizaje Profundo , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN , Secuenciación del Exoma/métodos
8.
Genet Med ; 25(1): 49-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322151

RESUMEN

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Ratones , Animales , Humanos , Metilación de ADN/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , ADN , Mutación
9.
Pediatr Allergy Immunol ; 34(4): e13937, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102386

RESUMEN

OBJECTIVE: Netherton syndrome (NS) (OMIM:256500) is a very rare autosomal recessive multisystem disorder mostly affecting ectodermal derivatives (skin and hair) and immune system. It is caused by biallelic loss-of-function variants in the SPINK5 gene, encoding the protease inhibitor lymphoepithelial Kazal-type-related inhibitor (LEKTI). MATERIAL, METHODS AND RESULTS: Here, we describe NS clinical and genetic features of homogenous patient group: 9 individuals from 7 families with similar ethnic background and who have the same SPINK5 variant (NM_006846.4: c.1048C > T, p.(Arg350*)) in homozygous or compound heterozygous states, suggesting that it is a common founder variant in Latvian population. Indeed, we were able to show that the variant is common in general Latvian population, and it shares the same haplotype among the NS individual. It is estimated that the variant arose >1000 years ago. Clinically, all nine patients exhibited typical NS skin changes (scaly erythroderma, ichthyosis linearis circumflexa, itchy skin), except for one patient who has a different skin manifestation-epidermodysplasia. Additionally, we show that developmental delay, previously underrecognized in NS, is a common feature among these patients. CONCLUSIONS: This study shows that the phenotype of NS individuals with the same genotype is highly homogeneous.


Asunto(s)
Síndrome de Netherton , Humanos , Síndrome de Netherton/genética , Inhibidor de Serinpeptidasas Tipo Kazal-5/genética , Letonia , Mutación , Piel
10.
Eur J Neurol ; 30(8): 2453-2460, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165526

RESUMEN

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a hereditary, slowly progressive neuropathy. Currently, there are no effective pharmacological treatments or sensitive disease activity biomarkers available. The aim of this study was to demonstrate the change in plasma neurofilament light chain (NfL) over time in a CMT cohort and analyse the association between CMT severity and NfL level. METHODS: Initially, 101 CMT patients and 64 controls were enrolled in the study. Repeated evaluation was performed in 73 patients and 28 controls at a 3-year interval. Disease severity assessment included clinical evaluation with CMT Neuropathy Score version 2 (CMTNSv2). Plasma NfL concentration was measured using the Simoa (single molecule array) NfL assay. RESULTS: Plasma NfL concentration was increased in the CMT group compared with controls (p < 0.001). Overall NfL level increased over the 3-year interval in both CMT (p = 0.012) and control (p = 0.001) groups. However, in 22 of 73 CMT patients and seven of 28 controls, the NfL level decreased from the baseline. Analysing the association between 3-year change in plasma NfL and disease severity (CMTNSv2), there was no correlation in the CMT group (r = 0.228, p = 0.052) or different CMT subgroups. CONCLUSIONS: Our study verifies increased plasma NfL concentrations in patients with CMT compared with controls. Longitudinal 3-year data showed a variable change in NfL levels between CMT subtypes. There was no association between change in NfL over time and disease severity. These findings suggests that NfL is not a biomarker for CMT progression.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Estudios de Seguimiento , Filamentos Intermedios , Proteínas de Neurofilamentos , Biomarcadores , Progresión de la Enfermedad
11.
Neurol Neurochir Pol ; 57(2): 206-211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36916493

RESUMEN

INTRODUCTION: Systemic sclerosis (SSc) is a chronic rheumatic disease that affects multiple organ systems, including the peripheral nervous system. However, studies into the involvement of polyneuropathies (PNP) have shown inconsistent results. The aim of this study was to determine the prevalence of small (SFN) and large (LFN) fibre neuropathy among SSc patients and the impact on health-related quality of life (HRQoL). MATERIAL AND METHODS: The study enrolled 67 patients with diagnosed SSc. The severity of neuropathic symptoms was evaluated using shortened and revised total neuropathy scoring criteria. Nerve conduction studies were used for LFN, and quantitative sensory testing was used to evaluate SFN. Neuropathic pain was evaluated using a Douleur Neuropathique en 4 questionnaire, and the severity of anxiety symptoms was assessed using a Generalised Anxiety Disorder-7 scale. The Health Assessment Questionnaire-Disability Index was used to assess HRQoL. Previous data on antinuclear autoantibodies (ANA) test results was obtained. Statistical analysis was performed using SPSS software. RESULTS: LFN was diagnosed in 47.8% (n = 32/67) and SFN in 40.3% (n = 27/67) of the subjects. ANA positivity was not associated with the presence of LFN/SFN. The severity of neuropathic pain had a significant correlation with anxiety symptoms (r = 0.61, p < 0.001), the severity of neuropathy symptoms (r = 0.51, p < 0.001) and HRQoL (r = 0.45, p < 0.001). The severity of neuropathy symptoms correlated with HRQoL (r = 0.39, p = 0.001). CONCLUSIONS: We demonstrated that PNP are found in almost all SSc patients. Also, SFN is as common as LFN. Additionally, we found that the severity of neuropathy symptoms and neuropathic pain are both associated with a worse HRQoL.


Asunto(s)
Neuralgia , Polineuropatías , Esclerodermia Sistémica , Humanos , Calidad de Vida , Prevalencia , Neuralgia/epidemiología , Neuralgia/etiología , Polineuropatías/epidemiología , Polineuropatías/etiología , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/epidemiología
12.
Genet Med ; 24(10): 2051-2064, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833929

RESUMEN

PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Proteínas Represoras , Anomalías Dentarias , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/etiología , Enfermedades del Desarrollo Óseo/genética , Deleción Cromosómica , Facies , Humanos , Discapacidad Intelectual/genética , Mutación Missense , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Represoras/genética , Anomalías Dentarias/diagnóstico , Factores de Transcripción/genética
13.
Am J Med Genet A ; 188(4): 1263-1279, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34939736

RESUMEN

Kohlschütter-Tönz syndrome (KTS) is a rare, autosomal recessive syndrome characterized by a triad of epilepsy, amelogenesis imperfecta and severe global developmental delay. It was first described in a Swiss family in 1974 by Alfried Kohlschütter and Otmar Tönz. It is caused by pathogenic variants in the ROGDI gene. To the best of our knowledge, there are currently 43 patients with a confirmed ROGDI gene pathogenic variant reported. Here, we review in detail the clinical manifestations of KTS, provide an overview of all reported genetically confirmed patients, and document an additional case of KTS-a 6-year-old Latvian girl-with a confirmed ROGDI gene pathogenic variant. In contrast to previous reports, we detected idiopathic bilateral nephrocalcinosis in this newly identified KTS patient. Perampanel proved an effective treatment for our patient with prolonged super-refractory status epilepticus. In order to better characterize this rare syndrome and its clinical course, it is important to report any additional symptoms and also the effectiveness of used therapies. Future research should focus on elucidating the mechanisms by which the absence/insufficiency of ROGDI-encoded protein causes the clinical manifestations of KTS. This knowledge could shape possible ways of influencing the disease's natural history with more effective therapies.


Asunto(s)
Amelogénesis Imperfecta , Epilepsia , Amelogénesis Imperfecta/diagnóstico , Amelogénesis Imperfecta/genética , Niño , Demencia , Epilepsia/genética , Femenino , Humanos , Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/genética
14.
Eur J Neurol ; 28(3): 974-981, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33340200

RESUMEN

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth (CMT) disease is a chronic, slowly progressing disorder. The lack of specific disease progression biomarkers limits the execution of clinical trials. However, neurofilament light chain (NfL) has been suggested as a potential biomarker for peripheral nervous system disorders. METHODS: Ninety-six CMT disease patients and 60 healthy controls were enrolled in the study. Disease severity assessment included clinical evaluation with CMT Neuropathy Score version 2 (CMTNSv2). Blood plasma NfL concentrations were measured using the single-molecule array NfL assay. RESULTS: The NfL concentration was significantly higher in the CMT disease patient group than in the controls (p < 0.001). Of the CMT disease patients, those with type CMTX1 had a higher NfL level than those in the two other analysed subgroups (CMT1A and other CMT disease types) (p = 0.0498). The NfL concentration had a significant but weak correlation with the CMTNSv2 (rs  = 0.25, p = 0.012). In one CMT disease patient with an extremely elevated NfL level, overlap with chronic inflammatory demyelinating polyneuropathy was suspected. Receiver operating characteristic analysis showed that an NfL concentration of 8.9 pg/ml could be used to discriminate CMT disease patients from controls, with an area under the curve of 0.881. CONCLUSIONS: Our study confirmed that the plasma NfL concentration is significantly higher in CMT disease patients than in controls. Plasma NfL concentration was found to significantly, albeit weakly, reflect the clinical severity of CMT disease. In the future, NfL may be used, either individually or collaboratively, as a biomarker in the clinical context of suspected CMT disease; however, several issues need to be addressed first.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Biomarcadores , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Humanos , Filamentos Intermedios , Proteínas de Neurofilamentos , Plasma , Curva ROC
15.
Medicina (Kaunas) ; 57(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34833481

RESUMEN

Background and Objectives: Recurrence of atrial fibrillation (AF) within six months after sinus rhythm restoration with direct current cardioversion (DCC) is a significant treatment challenge. Currently, the factors influencing outcome are mostly unknown. Studies have found a link between genetics and the risk of AF and efficacy of rhythm control. The aim of this study was to examine the association between eight single-nucleotide variants (SNVs) and the risk of AF development and recurrence after DCC. Materials and Methods: Regarding the occurrence of AF, 259 AF cases and 108 controls were studied. Genotypes for the eight SNVs located in the genes CAV1, MYH7, SOX5, KCNN3, ZFHX3, KCNJ5 and PITX2 were determined using high-resolution melting analysis and confirmed with Sanger sequencing. Six months after DCC, a telephone interview was conducted to determine whether AF had recurred. A polygenic risk score (PRS) was calculated as the unweighted sum of risk alleles. Multivariate regression analyses were performed to assess SNV and PRS association with AF occurrence and recurrence after DCC. Results: The risk allele of rs2200733 (PITX2) was significantly associated with the development of AF (p = 0.012, OR = 2.31, 95% CI = 1.206-4.423). AF recurred in 60% of patients and the allele generally associated with a decreased risk of AF of rs11047543 (SOX5) was associated with a greater risk of AF recurrence (p = 0.014, OR = 0.223, 95% CI = 0.067-0.738). A PRS of greater than 7 was significantly associated (p = 0.008) with a higher likelihood of developing AF after DCC (OR = 4.174, 95% CI = 1.454-11.980). Conclusions: A higher PRS is associated with increased odds of AF recurrence after treatment with DCC. PITX2 (rs2200733) is significantly associated with an increased risk of AF. The protective allele of rs11047543 (SOX5) is associated with a greater risk of AF recurrence. Further studies are needed to predict the success of rhythm control and guide patient selection towards the most efficacious treatment.


Asunto(s)
Fibrilación Atrial , Cardioversión Eléctrica , Fibrilación Atrial/epidemiología , Fibrilación Atrial/genética , Fibrilación Atrial/terapia , Humanos , Recurrencia , Factores de Riesgo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Resultado del Tratamiento
17.
BMC Pediatr ; 18(1): 317, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285761

RESUMEN

BACKGROUND: Inherited unconjugated hyperbilirubinemia is caused by variants in the gene UGT1A1 leading to Gilbert's syndrome and Crigler-Najjar syndrome types I and II. These syndromes are differentiated on the basis of UGT1A1 residual enzymatic activity and its affected bilirubin levels and responsiveness to phenobarbital treatment. CASE PRESENTATION: In this report, we present a boy with Crigler-Najjar syndrome type II with high unconjugated bilirubin levels that decreased after phenobarbital treatment but increased in adolescence. Four different UGT1A1 gene variants have been identified for this patient, of which one is novel (g.11895_11898del) most likely confirming diagnose molecularly. CONCLUSIONS: The presented case highlights the challenges encountered with the interpretation of molecular data upon identification of multiple variants in one gene that are causing different degree reducing effect on enzyme activity leading to several clinical conditions.


Asunto(s)
Síndrome de Crigler-Najjar/genética , Glucuronosiltransferasa/genética , Mutación , Polimorfismo Genético , Adolescente , Síndrome de Crigler-Najjar/diagnóstico , Síndrome de Crigler-Najjar/tratamiento farmacológico , Humanos , Masculino , Fenobarbital/uso terapéutico
18.
Pediatr Hematol Oncol ; 35(1): 37-44, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29528261

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Modern treatment protocols allow achievement of long-term event-free survival rates in up to 85% of cases, although the treatment response varies among different patient groups. It is hypothesized that treatment response is influenced by the IL15 gene variations, although research results are conflicting. To analyze IL15 gene variations influence treatment response, clinical course and the risk of developing ALL we performed a case-control and family-based study. The study included 81 patients with childhood ALL. DNA samples of both or one biological parent were available for 62 of ALL patients and 130 age and gender adjusted healthy samples were used as a control group. Analyzed IL15 gene variations: rs10519612, rs10519613 and rs17007695 were genotyped using PCR-RFLP assay. Our results shows that IL15 gene variations haplotypes are associated with the risk of developing childhood ALL (p < 0.05), although there is no such association for the variations separately. The variations rs10519612 and rs1059613 in a recessive pattern of inheritance were associated with hyperdiploidy (p = 0.048). Analyzed genetic variations had no impact on other clinical features and treatment response (assessed by the minimal residual disease) in our study.


Asunto(s)
Interleucina-15/genética , Polimorfismo de Longitud del Fragmento de Restricción , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Letonia/epidemiología , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Factores de Riesgo , Tasa de Supervivencia
19.
Allergy Asthma Clin Immunol ; 20(1): 28, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555427

RESUMEN

Hereditary angioedema (HAE) poses diagnostic challenges due to its episodic, non-specific symptoms and overlapping conditions. This study focuses on the genetic basis of HAE, particularly focusing on unresolved cases and those with normal C1-inhibitor levels (nC1-INH HAE). This study reveals that conventional testing identified pathogenic variants in only 10 patients (n = 32), emphasizing the necessity for an integrative approach using genome, exome, and transcriptome sequencing. Despite extensive genetic analyses, the diagnostic yield for nC1-INH HAE remains low in our study, the pathogenic variant for nC1-INH HAE was identified in only 1 patient (n = 21). Investigation into candidate genes yielded no pathogenic variants, prompting a re-evaluation of patients' diagnoses. This study advocates for a nuanced approach to genetic testing, recognizing its limitations and emphasizing the need for continuous clinical assessment. The complex genetic landscape of nC1-INH HAE necessitates further research for a more comprehensive understanding. In conclusion, this study contributes valuable insights into the genetic intricacies of HAE, highlighting the challenges in diagnosis and the evolving nature of the disease. The findings underscore the importance of advanced sequencing techniques and an integrated diagnostic strategy in unravelling the complexities of HAE, particularly in nС1-INH HAE cases.

20.
Front Immunol ; 15: 1324671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726011

RESUMEN

Introduction: Hereditary angioedema (HAE) is a rare, life-threatening autosomal dominant genetic disorder caused by a deficient and/or dysfunctional C1 esterase inhibitor (C1-INH) (type 1 and type 2) leading to recurrent episodes of edema. This study aims to explore HAE patients' metabolomic profiles and identify novel potential diagnostic biomarkers for HAE. The study also examined distinguishing HAE from idiopathic angioedema (AE). Methods: Blood plasma samples from 10 HAE (types 1/2) patients, 15 patients with idiopathic AE, and 20 healthy controls were collected in Latvia and analyzed using LC-MS based targeted metabolomics workflow. T-test and fold change calculation were used to identify metabolites with significant differences between diseases and control groups. ROC analysis was performed to evaluate metabolite based classification model. Results: A total of 33 metabolites were detected and quantified. The results showed that isovalerylcarnitine, cystine, and hydroxyproline were the most significantly altered metabolites between the disease and control groups. Aspartic acid was identified as a significant metabolite that could differentiate between HAE and idiopathic AE. The mathematical combination of metabolites (hydroxyproline * cystine)/(creatinine * isovalerylcarnitine) was identified as the diagnosis signature for HAE. Furthermore, glycine/asparagine ratio could differentiate between HAE and idiopathic AE. Conclusion: Our study identified isovalerylcarnitine, cystine, and hydroxyproline as potential biomarkers for HAE diagnosis. Identifying new biomarkers may offer enhanced prospects for accurate, timely, and economical diagnosis of HAE, as well as tailored treatment selection for optimal patient care.


Asunto(s)
Angioedemas Hereditarios , Biomarcadores , Metabolómica , Humanos , Femenino , Masculino , Angioedemas Hereditarios/diagnóstico , Angioedemas Hereditarios/sangre , Adulto , Biomarcadores/sangre , Metabolómica/métodos , Persona de Mediana Edad , Metaboloma , Adulto Joven , Estudios de Casos y Controles , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/metabolismo , Adolescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA