Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Skin Res Technol ; 30(3): e13632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38407411

RESUMEN

BACKGROUND: The Grand-AID research project, consisting of GRANDEL-The Beautyness Company, the dermatology department of Augsburg University Hospital and the Chair of IT Infrastructure for Translational Medical Research at Augsburg University, is currently researching the development of a digital skin consultation tool that uses artificial intelligence (AI) to analyze the user's skin and ultimately perform a personalized skin analysis and a customized skin care routine. Training the AI requires annotation of various skin features on facial images. The central question is whether videos are better suited than static images for assessing dynamic parameters such as wrinkles and elasticity. For this purpose, a pilot study was carried out in which the annotations on images and videos were compared. MATERIALS AND METHODS: Standardized image sequences as well as a video with facial expressions were taken from 25 healthy volunteers. Four raters with dermatological expertise annotated eight features (wrinkles, redness, shine, pores, pigmentation spots, dark circles, skin sagging, and blemished skin) with a semi-quantitative and a linear scale in a cross-over design to evaluate differences between the image modalities and between the raters. RESULTS: In the videos, most parameters tended to be assessed with higher scores than in the images, and in some cases significantly. Furthermore, there were significant differences between the raters. CONCLUSION: The present study shows significant differences between the two evaluation methods using image or video analysis. In addition, the evaluation of the skin analysis depends on subjective criteria. Therefore, when training the AI, we recommend regular training of the annotating individuals and cross-validation of the annotation.


Asunto(s)
Inteligencia Artificial , Piel , Humanos , Elasticidad , Cara/diagnóstico por imagen , Proyectos Piloto , Piel/diagnóstico por imagen , Estudios Cruzados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA