Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Poult Sci ; 102(12): 103094, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931376

RESUMEN

In the antibiotics-free era, stimbiotic (STB) has been suggested as a new alternative of antibiotic growth promoters to modulate intestinal health via stimulating dietary fiber utilization in poultry production. The aim of this study was to evaluate the effects of STB supplementation in corn- or wheat-basal diet on growth performance, intestinal development, and function of broilers. A total of 512 one-day-old Arbor Acres(AA)broilers were randomly allocated 4 treatments, including corn group (CG), corn + 100 g/t STB (CG + STB), wheat group (WG), wheat + 100 g/t STB (WG + STB). The broilers were weighed at the days of 14, 28, and 42, of which 8 repetitions per treatment were randomly selected to determine the intestinal morphology, intestinal barrier, and cecal microbiota and metabolites. Our data showed that STB increased (P < 0.05) feed intake, body weight and reduced FCR for the overall period (0-42 d). At 28 d of age, significant increases in villus height and the villus height-to-crypt depth ratio (V/C) were found in the STB supplementation groups (P < 0.05). Addition of STB significantly increased intestinal mucosal DAO and AMPK enzyme activity and the gene expression of OCLN, CLDN1, ZO1, MUC2, SGLT1, PEPT1, FABP2, Ghrelin, and GCG in jejunum (P < 0.05), and significantly decreased the expression of the PYY gene. In addition, STB increased the relative abundance of beneficial bacteria, such as Akkermansia, Bifidobacterium, and Oscillospirales (P < 0.05). A significant increase in cecal short-chain fatty acid (SCFAs) concentration was also observed in the STB supplementation groups. At the cellular level, STB cannot directly increase the expression of small intestinal epithelial cells, and may indirectly improve intestinal barrier function by increasing the level of sodium butyrate. Overall, these results indicated that STB supplementation could improve the growth performance, intestinal development and barrier functions, and fiber fermentation in cecum of broiler chickens.


Asunto(s)
Pollos , Suplementos Dietéticos , Animales , Zea mays , Triticum , Dieta/veterinaria , Alimentación Animal/análisis
2.
J Anim Sci Biotechnol ; 13(1): 100, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36100948

RESUMEN

BACKGROUND: Two experiments were conducted to establish an optimal NE challenge model and evaluate the efficacy of stimbiotic (STB) supplementation in necrotic enteritis (NE) challenged broilers. In Exp. 1, a total of 120 Arbor Acres (AA) broilers (45.0 ± 0.21 g) were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement. Vaccine treatments included non-challenge (0), × 10 the recommended dose (× 10) or × 20 the recommended dose (× 20) by the manufacturer. Clostridium perfringens (CP) treatments were non-challenge (No) or 3 mL of 2.2 × 107 CFU CP challenge (Yes). In Exp. 2, a total of 72 AA broilers (40.17 ± 0.27 g) were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement. Dietary treatments included non-additive (CON), 100 mg/kg STB (STB) and 100 mg/kg STB on top of a typical commercial blend including an essential oil, probiotics, and enzyme (CB). Challenge treatments included non-NE challenge (No) and NE challenge (Yes) as established in Exp. 1. RESULTS: In Exp. 1, CP and vaccine challenge decreased (P < 0.05) body weight (BW), body weight gain (BWG) and feed intake (FI), and increased (P < 0.05) the number of broilers with diarrhea and intestinal lesions. The oral administration of × 20 recommended dose of vaccines coupled with 3 mL of 2.2 × 107 CFU CP resulted in (P < 0.01) a significantly increased incidence of wet litter and intestinal lesions. Thus, this treatment was chosen as the challenge model for the successful inducement of NE in Exp. 2. In Exp. 2, the NE challenge negatively affected (P < 0.01) growth performance, ileal morphology, immunoglobulin contents in blood, caecal microbiota in the caecum, footpad dermatitis, intestinal lesion scores, tumour necrosis factor (TNF-α) and endotoxin in the serum compared with the non-NE challenged birds. The supplementation of STB and CB in diets enhanced (P < 0.05) growth performance, intestinal microbiota, and blood profiles by stimulating ileal morphology (VH and VH:CD) and propionate production in the cecum, and there were no differences in measured variables between STB and CB supplemented birds. CONCLUSION: Overall, these results indicate that STB supplementation was able to reduce the inflammatory response and improve the performance of NE challenged birds, and the supplementation of STB alone was as effective as a typical commercial blend containing a number of other additives.

4.
Poult Sci ; 95(12): 2849-2860, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27194731

RESUMEN

The aim of this study was to evaluate the capacity of chickens to adapt to and compensate for early dietary restriction of non-phytate P ( NPP: ) and/or Ca (10 to 21 d) in a later phase (22 to 35 d), and to determine whether compensatory processes depend on the P and Ca concentrations in the finisher diet. Four diets were formulated and fed to broilers from 10 to 21 d in order to generate birds with different mineral status: L1 (0.6% Ca, 0.30% NPP), L2 (0.6% Ca, 0.45% NPP), H1 (1.0% Ca, 0.30% NPP), and H2 (1.0% Ca, 0.45% NPP). On d 22, each group was divided into three groups which received a low (L, 0.48% Ca, 0.24% NPP), moderate (M, 0.70% Ca, 0.35% NPP), or high (H, 0.90% Ca, 0.35% NPP) finisher diet until 35 d, resulting in a total of 12 treatments. Lowering the Ca level enhanced apparent ileal digestibility of P (P AID) at 21 d especially with the high NPP level (Ca × NPP, P < 0.01). The lower bone mineralization observed at 21 d in broilers fed the L1 diet compared to those fed the H2 diet had disappeared by 35 d with long-term stimulation of the P AID with the low NPP level (P < 0.001). Although P AID and growth performance were improved in birds fed the L1L compared to the L1H and H2H treatments, tibia characteristics tended to be lower in birds fed the L1L compared to those fed the L1H treatment. Birds fed the H1M treatment had higher P AID, growth performance and tibia ash content than those fed the H1H treatment. A significant increase in the mRNA levels of several genes encoding Ca and P transporters was observed at 35 d in birds fed the L1 followed by the L diet compared to birds fed the L1 followed by the M diet. In conclusion, chickens are able to adapt to early dietary changes in P and Ca through improvement of digestive efficiency in a later phase, and the extent of the compensation in terms of growth performance and bone mineralization depends on the P and Ca levels in the subsequent diet.


Asunto(s)
Adaptación Fisiológica/fisiología , Calcio/deficiencia , Pollos/fisiología , Dieta/veterinaria , Fósforo/deficiencia , Animales , Pollos/metabolismo , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA