Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1313: 273-291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34661899

RESUMEN

Malaria is a pandemic with nearly half of global population at risk, caused by parasite Plasmodium species, particularly P. falciparum with a high morbidity and mortality, especially among children. There is an urgent need for development of population protective vaccines, such as in sub-Saharan low-income countries, where P. falciparum malaria is endemic. After years of endeavour with children and adults for safety and efficacy clinical trials, the P. falciparum circumsporozoite protein antigen, is targeted by specific antibodies induced by recombinant vaccine, called TRS,S. TRS,S has been authorized by WHO and Malawi Government to be the first malaria vaccine for up to 2 years of aged children for protection against malaria. Other malaria vaccines in clinical trials are also very promising candidates, including the original live, X-ray attenuated P-sporozoite vaccine, inducing antigen-specific T cell immunity at liver stage. Malaria parasite at blood symptomatic stage is targeted by specific antibodies to parasite-infected erythrocytes, which are important against pathogenic placenta-infected erythrocyte sequestration. Here, the demographic distribution of Plasmodium species and their pathogenicity in infected people are discussed. The role of innate phagocytic cells and malaria antigen specific T cell immunity, as well as that of specific antibody production by B cells are highlighted. The paramount role of cytotoxic CD8+ T cellular immunity in malaria people protection is also included.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Anciano , Animales , Femenino , Humanos , Inmunidad Celular , Plasmodium falciparum , Embarazo , Esporozoítos
2.
Dose Response ; 19(2): 15593258211019880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177396

RESUMEN

Cadmium telluride quantum dots (CdTe-QDs) are acquiring great interest in terms of their applications in biomedical sciences. Despite earlier sporadic studies on possible oncogenic roles and anticancer properties of CdTe-QDs, there is limited information regarding the oncogenic potential of CdTe-QDs in cancer progression. Here, we investigated the oncogenic effects of CdTe-QDs on the gene expression profiles of Chang cancer cells. Chang cancer cells were treated with 2 different doses of CdTe-QDs (10 and 25 µg/ml) at different time intervals (6, 12, and 24 h). Functional annotations helped identify the gene expression profile in terms of its biological process, canonical pathways, and gene interaction networks activated. It was found that the gene expression profiles varied in a time and dose-dependent manner. Validation of transcriptional changes of several genes through quantitative PCR showed that several genes upregulated by CdTe-QD exposure were somewhat linked with oncogenesis. CdTe-QD-triggered functional pathways that appear to associate with gene expression, cell proliferation, migration, adhesion, cell-cycle progression, signal transduction, and metabolism. Overall, CdTe-QD exposure led to changes in the gene expression profiles of the Chang cancer cells, highlighting that this nanoparticle can further drive oncogenesis and cancer progression, a finding that indicates the merit of immediate in vivo investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA