Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gerontology ; 70(4): 429-438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219728

RESUMEN

INTRODUCTION: Current cognitive assessments suffer from floor/ceiling and practice effects, poor psychometric performance in mild cases, and repeated assessment effects. This study explores the use of digital speech analysis as an alternative tool for determining cognitive impairment. The study specifically focuses on identifying the digital speech biomarkers associated with cognitive impairment and its severity. METHODS: We recruited older adults with varying cognitive health. Their speech data, recorded via a wearable microphone during the reading aloud of a standard passage, were processed to derive digital biomarkers such as timing, pitch, and loudness. Cohen's d effect size highlighted group differences, and correlations were drawn to the Montreal Cognitive Assessment (MoCA). A stepwise approach using a Random Forest model was implemented to distinguish cognitive states using speech data and predict MoCA scores based on highly correlated features. RESULTS: The study comprised 59 participants, with 36 demonstrating cognitive impairment and 23 serving as cognitively intact controls. Among all assessed parameters, similarity, as determined by Dynamic Time Warping (DTW), exhibited the most substantial positive correlation (rho = 0.529, p < 0.001), while timing parameters, specifically the ratio of extra words, revealed the strongest negative correlation (rho = -0.441, p < 0.001) with MoCA scores. Optimal discriminative performance was achieved with a combination of four speech parameters: total pause time, speech-to-pause ratio, similarity via DTW, and intelligibility via DTW. Precision and balanced accuracy scores were found to be 88.1 ± 1.2% and 76.3 ± 1.3%, respectively. DISCUSSION: Our research proposes that reading-derived speech data facilitates the differentiation between cognitively impaired individuals and cognitively intact, age-matched older adults. Specifically, parameters based on timing and similarity within speech data provide an effective gauge of cognitive impairment severity. These results suggest speech analysis as a viable digital biomarker for early detection and monitoring of cognitive impairment, offering novel approaches in dementia care.


Asunto(s)
Disfunción Cognitiva , Habla , Humanos , Anciano , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Cognición , Pruebas de Estado Mental y Demencia , Biomarcadores
2.
Sensors (Basel) ; 23(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37430862

RESUMEN

Aggression in children is highly prevalent and can have devastating consequences, yet there is currently no objective method to track its frequency in daily life. This study aims to investigate the use of wearable-sensor-derived physical activity data and machine learning to objectively identify physical-aggressive incidents in children. Participants (n = 39) aged 7 to 16 years, with and without ADHD, wore a waist-worn activity monitor (ActiGraph, GT3X+) for up to one week, three times over 12 months, while demographic, anthropometric, and clinical data were collected. Machine learning techniques, specifically random forest, were used to analyze patterns that identify physical-aggressive incident with 1-min time resolution. A total of 119 aggression episodes, lasting 7.3 ± 13.1 min for a total of 872 1-min epochs including 132 physical aggression epochs, were collected. The model achieved high precision (80.2%), accuracy (82.0%), recall (85.0%), F1 score (82.4%), and area under the curve (89.3%) to distinguish physical aggression epochs. The sensor-derived feature of vector magnitude (faster triaxial acceleration) was the second contributing feature in the model, and significantly distinguished aggression and non-aggression epochs. If validated in larger samples, this model could provide a practical and efficient solution for remotely detecting and managing aggressive incidents in children.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Aceleración , Agresión , Ejercicio Físico , Aprendizaje Automático
3.
Semin Vasc Surg ; 36(3): 454-459, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37863620

RESUMEN

Chronic limb-threatening ischemia (CLTI) is the most advanced form of peripheral artery disease. CLTI has an extremely poor prognosis and is associated with considerable risk of major amputation, cardiac morbidity, mortality, and poor quality of life. Early diagnosis and targeted treatment of CLTI is critical for improving patient's prognosis. However, this objective has proven elusive, time-consuming, and challenging due to existing health care disparities among patients. In this article, we reviewed how artificial intelligence (AI) and machine learning (ML) can be helpful to accurately diagnose, improve outcome prediction, and identify disparities in the treatment of CLTI. We demonstrate the importance of AI/ML approaches for management of these patients and how available data could be used for computer-guided interventions. Although AI/ML applications to mitigate health care disparities in CLTI are in their infancy, we also highlighted specific AI/ML methods that show potential for addressing health care disparities in CLTI.


Asunto(s)
Isquemia Crónica que Amenaza las Extremidades , Enfermedad Arterial Periférica , Humanos , Inteligencia Artificial , Disparidades en Atención de Salud , Calidad de Vida , Resultado del Tratamiento , Isquemia/diagnóstico , Isquemia/terapia , Enfermedad Crónica , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/terapia , Pronóstico , Recuperación del Miembro , Aprendizaje Automático , Factores de Riesgo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA