Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 23(9): 1769-1778, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040194

RESUMEN

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Asunto(s)
Genoma Mitocondrial , Enfermedades Mitocondriales , Adulto , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Eliminación de Secuencia/genética
2.
Hum Mutat ; 41(8): 1394-1406, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32419253

RESUMEN

Whole mitochondrial DNA (mtDNA) sequencing is now systematically used in clinical laboratories to screen patients with a phenotype suggestive of mitochondrial disease. Next Generation Sequencing (NGS) has significantly increased the number of identified pathogenic mtDNA variants. Simultaneously, the number of variants of unknown significance (VUS) has increased even more, thus challenging their interpretation. Correct classification of the variants' pathogenicity is essential for optimal patient management, including treatment and genetic counseling. Here, we used single muscle fiber studies to characterize eight heteroplasmic mtDNA variants, among which were three novel variants. By applying the pathogenicity scoring system, we classified four variants as "definitely pathogenic" (m.590A>G, m.9166T>C, m.12293G>A, and m.15958A>T). Two variants remain "possibly pathogenic" (m.4327T>C and m.5672T>C) but should these be reported in a different family, they would be reclassified as "definitely pathogenic." We also illustrate the contribution of single-fiber studies to the diagnostic approach in patients harboring pathogenic variants with low level heteroplasmy.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Mitocondriales/genética , Adolescente , Adulto , Anciano , Femenino , Heteroplasmia , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Patrón de Herencia , Masculino , Persona de Mediana Edad , Conformación de Ácido Nucleico , Análisis de Secuencia de ADN
3.
Am J Hum Genet ; 100(1): 151-159, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27989324

RESUMEN

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null. Metabolomics analyses demonstrated a significant concomitant accumulation of the MDH substrate, malate, and fumarate, its immediate precursor in the Krebs cycle, in affected subjects' fibroblasts. Lentiviral complementation with wild-type MDH2 cDNA restored MDH2 levels and mitochondrial MDH activity. Additionally, introduction of the three missense mutations from the affected subjects into Saccharomyces cerevisiae provided functional evidence to support their pathogenicity. Disruption of the Krebs cycle is a hallmark of cancer, and MDH2 has been recently identified as a novel pheochromocytoma and paraganglioma susceptibility gene. We show that loss-of-function mutations in MDH2 are also associated with severe neurological clinical presentations in children.


Asunto(s)
Encefalopatías/genética , Ciclo del Ácido Cítrico , Malato Deshidrogenasa/genética , Mutación , Edad de Inicio , Alelos , Secuencia de Aminoácidos , Niño , Preescolar , Ciclo del Ácido Cítrico/genética , Fibroblastos/enzimología , Fibroblastos/metabolismo , Fumaratos/metabolismo , Prueba de Complementación Genética , Humanos , Lactante , Recién Nacido , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Masculino , Metabolómica , Modelos Moleculares
4.
Hum Mol Genet ; 26(9): 1599-1611, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28335035

RESUMEN

Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency. Here, we report on a novel homozygous CISD2 mutation (c.215A > G; p.Asn72Ser) in a Moroccan patient with an overlapping phenotype suggesting that Wolfram syndrome type 1 and type 2 form a continuous clinical spectrum with genetic heterogeneity. The present study provides strong evidence that this particular CISD2 mutation disturbs cellular Ca2+ homeostasis with enhanced Ca2+ flux from the ER to mitochondria and cytosolic Ca2+ abnormalities in patient-derived fibroblasts. This Ca2+ dysregulation was associated with increased ER-mitochondria contact, a swollen ER lumen and a hyperfused mitochondrial network in the absence of overt ER stress. Although there was no marked alteration in mitochondrial bioenergetics under basal conditions, culture of patient-derived fibroblasts in glucose-free galactose medium revealed a respiratory chain defect in complexes I and II, and a trend towards decreased ATP levels. Our results provide important novel insight into the potential disease mechanisms underlying the neurodegenerative consequences of CISD2 mutations and the subsequent development of multisystemic disease.


Asunto(s)
Envejecimiento Prematuro/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Atrofia Óptica/genética , Calcio/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Homeostasis , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Linaje , Síndrome de Wolfram/genética
5.
J Hum Genet ; 64(7): 637-645, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30948790

RESUMEN

The genetic causes of Leigh syndrome are heterogeneous, with a poor genotype-phenotype correlation. To date, more than 50 nuclear genes cause nuclear gene-encoded Leigh syndrome. NDUFS6 encodes a 13 kiloDaltons subunit, which is part of the peripheral arm of complex I and is localized in the iron-sulfur fraction. Only a few patients were reported with proven NDUFS6 pathogenic variants and all presented with severe neonatal lactic acidemia and complex I deficiency, leading to death in the first days of life. Here, we present a patient harboring two NDUFS6 variants with a phenotype compatible with Leigh syndrome. Although most of previous reports suggested that NDUFS6 pathogenic variants invariably lead to early neonatal death, this report shows that the clinical spectrum could be larger. We found a severe decrease of NDUFS6 protein level in patient's fibroblasts associated with a complex I assembly defect in patient's muscle and fibroblasts. These data confirm the importance of NDUFS6 and the Zn-finger domain for a correct assembly of complex I.


Asunto(s)
Enfermedad de Leigh/genética , NADH Deshidrogenasa/genética , Acidosis Láctica/genética , Núcleo Celular/genética , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/genética , Fibroblastos/enzimología , Estudios de Asociación Genética , Humanos , Lactante , Enfermedad de Leigh/diagnóstico por imagen , Enfermedad de Leigh/enzimología , Masculino , Mitocondrias/genética , Músculos/enzimología , NADH Deshidrogenasa/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN
6.
Fetal Diagn Ther ; 45(6): 403-412, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30121677

RESUMEN

BACKGROUND: Analysis of cell-free fetal DNA in maternal plasma is very promising for early diagnosis of monogenic diseases. However, it has been limited by the need to set up patient- or disease-specific custom-made approaches. Here we propose a universal test based on fluorescent multiplex PCR and size fragment analysis for an indirect diagnosis of cystic fibrosis (CF). METHODS: The test, based on haplotyping, includes nine intra- and extragenic short tandem repeats of the CFTR locus, the coamplification of p.Phe508del (the most frequent mutation in CF patients worldwide), and a specific SRY sequence. The assay is able to determine the inherited paternal allele. RESULTS: Our simple approach was successfully applied to 30 couples and provided clear results from the maternal plasma. The mean rate of informative markers was sufficient to propose it for use in indirect diagnosis. CONCLUSIONS: This noninvasive prenatal diagnosis test, focused on indirect diagnosis of CF, offers many advantages over current methods: it is simple, rapid, and cost-effective. It allows for the testing of a large number of couples with high risk of CF, whatever the familial mutation of the CFTR gene. It provides an alternative method to reduce the number of invasive tests.


Asunto(s)
Ácidos Nucleicos Libres de Células/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Diagnóstico Prenatal/métodos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Haplotipos , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos
7.
BMC Med Genet ; 19(1): 57, 2018 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-29625556

RESUMEN

BACKGROUND: Since the advent of next generation sequencing (NGS), several studies have tried to evaluate the relevance of targeted gene panel sequencing and whole exome sequencing for molecular diagnosis of mitochondrial diseases. The comparison between these different strategies is extremely difficult. A recent study analysed a cohort of patients affected by a mitochondrial disease using a NGS approach based on a targeted gene panel including 132 genes. This strategy led to identify the causative mutations in 15.2% of cases. The number of novel genes responsible for respiratory chain deficiency increases very rapidly. METHODS: In order to determine the impact of larger panels used as a first screening strategy on molecular diagnosis success, we analysed a cohort of 80 patients affected by a mitochondrial disease with a first mitochondrial DNA (mtDNA) NGS screening and secondarily a targeted mitochondrial panel of 281 nuclear genes. RESULTS: Pathogenic mtDNA abnormalities were identified in 4.1% (1/24) of children and 25% (14/56) of adult patients. The remaining 65 patients were analysed with our targeted mitochondrial panel and this approach enabled us to achieve an identification rate of 21.7% (5/23) in children versus 7.1% (3/42) in adults. CONCLUSIONS: Our results confirm that larger gene panels do not improve diagnostic yield of mitochondrial diseases due to (i) their very high genetic heterogeneity, (ii) the ongoing discovery of novel genes and (iii) mutations in genes apparently not related to mitochondrial function that lead to secondary respiratory chain deficiency.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Análisis de Secuencia de ADN/métodos , Anciano , Preescolar , Femenino , Heterogeneidad Genética , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad
8.
Mol Genet Metab ; 121(3): 224-226, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28529009

RESUMEN

Patients carrying Acyl-CoA dehydrogenase 9 (ACAD9) mutations reported to date mainly present with severe hypertrophic cardiomyopathy and isolated complex I (CI) dysfunction. Here we report a novel ACAD9 mutation in a young girl presenting with severe hypertrophic cardiomyopathy, isolated CI deficiency and interestingly multiple respiratory chain complexes assembly defects. We show that ACAD9 analysis has to be performed in first intention in patients presenting with cardiac hypertrophy even in the presence of multiple assembly defects.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Mutación , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasas/sangre , Niño , Transporte de Electrón , Complejo I de Transporte de Electrón/sangre , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Lactante
9.
Hum Mutat ; 37(12): 1354-1362, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27650058

RESUMEN

Perrault syndrome (PS) is a rare autosomal recessive condition characterized by deafness and gonadic dysgenesis. Recently, mutations in five genes have been identified: C10orf2, CLPP, HARS2, HSD17B4, and LARS2. Probands included are presented with sensorineural deafness associated with gonadic dysgenesis. DNA was sequenced using next-generation sequencing (NGS) with a panel of 35 deafness genes including the five Perrault genes. Exonic variations known as pathogenic mutations or detected with <1% frequency in public databases were extracted and subjected to segregation analysis within each family. Both mutations and low coverage regions were analyzed by Sanger sequencing. Fourteen female index patients were included. The screening in four cases has been extended to four family members presenting with PS phenotype. For four unrelated patients (28.6%), causative mutations were identified: three homozygous mutations in C10orf2, CLPP, and HARS2, and one compound heterozygous mutation in LARS2. Three additional heterozygous mutations in LARS2 and HSD17B4 were found in three independent familial cases. All these missense mutations were verified by Sanger sequencing. Familial segregation analyses confirmed the molecular diagnosis in all cases carrying biallelic mutations. Because of NGS, molecular analysis confirmed the clinical diagnosis of PS in 28.6% of our cohort and four novel mutations were found in four Perrault genes. For the unsolved cases, exome sequencing should be performed to search for a sixth unknown PS gene.


Asunto(s)
Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación Missense , Análisis de Secuencia de ADN/métodos , Adolescente , Aminoacil-ARNt Sintetasas/genética , Niño , Preescolar , ADN Helicasas/genética , Endopeptidasa Clp/genética , Exoma , Femenino , Predisposición Genética a la Enfermedad , Humanos , Lactante , Proteínas Mitocondriales/genética , Linaje , Proteína-2 Multifuncional Peroxisomal/genética
10.
Biol Res ; 49: 4, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26742794

RESUMEN

BACKGROUND: Coenzyme Q10 (CoQ10 or ubiquinone) deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC) spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system. It is widely reported that CoQ10 deficient patients present decreased quinone-dependent activities (segments I + III or G3P + III and II + III) while MRC activities of complexes I, II, III, IV and V are normal. We previously suggested that CoQ10 defect may be associated with a deficiency of CoQ10-independent MRC complexes. The aim of this study was to verify this hypothesis in order to improve the diagnosis of this disease. RESULTS: To determine whether CoQ10 defect could be associated with MRC deficiency, we quantified CoQ10 by LC-MSMS in a cohort of 18 patients presenting CoQ10-dependent deficiency associated with MRC defect. We found decreased levels of CoQ10 in eight patients out of 18 (45 %), thus confirming CoQ10 disease. CONCLUSIONS: Our study shows that CoQ10 defect can be associated with MRC deficiency. This could be of major importance in clinical practice for the diagnosis of a disease that can be improved by CoQ10 supplementation.


Asunto(s)
Ataxia/genética , Transporte de Electrón/genética , Enfermedades Mitocondriales/genética , Debilidad Muscular/genética , Mutación , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Adolescente , Adulto , Anciano , Ataxia/diagnóstico , Ataxia/metabolismo , Biopsia , Células Cultivadas , Niño , Preescolar , Cromatografía Liquida , Femenino , Fibroblastos/enzimología , Humanos , Lactante , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Músculos/patología , Espectrofotometría/métodos , Espectrometría de Masas en Tándem/métodos , Ubiquinona/biosíntesis , Ubiquinona/genética , Ubiquinona/metabolismo , Adulto Joven
11.
Brain ; 137(Pt 8): 2329-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24934289

RESUMEN

Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V. The multiple mitochondrial DNA deletions found in skeletal muscle revealed a mitochondrial DNA instability disorder. Patient fibroblasts present with respiratory chain deficiency, mitochondrial ultrastructural alterations and fragmentation of the mitochondrial network. Interestingly, expression of matrix-targeted photoactivatable GFP showed that mitochondrial fusion was not inhibited in patient fibroblasts. Using whole-exome sequencing we identified a missense mutation (c.176C>T; p.Ser59Leu) in the CHCHD10 gene that encodes a coiled-coil helix coiled-coil helix protein, whose function is unknown. We show that CHCHD10 is a mitochondrial protein located in the intermembrane space and enriched at cristae junctions. Overexpression of a CHCHD10 mutant allele in HeLa cells led to fragmentation of the mitochondrial network and ultrastructural major abnormalities including loss, disorganization and dilatation of cristae. The observation of a frontotemporal dementia-amyotrophic lateral sclerosis phenotype in a mitochondrial disease led us to analyse CHCHD10 in a cohort of 21 families with pathologically proven frontotemporal dementia-amyotrophic lateral sclerosis. We identified the same missense p.Ser59Leu mutation in one of these families. This work opens a novel field to explore the pathogenesis of the frontotemporal dementia-amyotrophic lateral sclerosis clinical spectrum by showing that mitochondrial disease may be at the origin of some of these phenotypes.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , ADN Mitocondrial/genética , Demencia Frontotemporal/etiología , Mitocondrias/patología , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/genética , Edad de Inicio , Anciano , Alelos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Exoma/genética , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Células HeLa , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación Missense , Linaje , Fenotipo
13.
Brain Commun ; 6(3): fcae160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756539

RESUMEN

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

14.
Ann Clin Transl Neurol ; 11(6): 1478-1491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703036

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the implementation of NGS within the French mitochondrial network, MitoDiag, from targeted gene panels to whole exome sequencing (WES) or whole genome sequencing (WGS) focusing on mitochondrial nuclear-encoded genes. METHODS: Over 2000 patients suspected of Primary Mitochondrial Diseases (PMD) were sequenced by either targeted gene panels, WES or WGS within MitoDiag. We described the clinical, biochemical, and molecular data of 397 genetically confirmed patients, comprising 294 children and 103 adults, carrying pathogenic or likely pathogenic variants in nuclear-encoded genes. RESULTS: The cohort exhibited a large genetic heterogeneity, with the identification of 172 distinct genes and 253 novel variants. Among children, a notable prevalence of pathogenic variants in genes associated with oxidative phosphorylation (OXPHOS) functions and mitochondrial translation was observed. In adults, pathogenic variants were primarily identified in genes linked to mtDNA maintenance. Additionally, a substantial proportion of patients (54% (42/78) and 48% (13/27) in children and adults, respectively), undergoing WES or WGS testing displayed PMD mimics, representing pathologies that clinically resemble mitochondrial diseases. INTERPRETATION: We reported the largest French cohort of patients suspected of PMD with pathogenic variants in nuclear genes. We have emphasized the clinical complexity of PMD and the challenges associated with recognizing and distinguishing them from other pathologies, particularly neuromuscular disorders. We confirmed that WES/WGS, instead of panel approach, was more valuable to identify the genetic basis in patients with "possible" PMD and we provided a genetic testing flowchart to guide physicians in their diagnostic strategy.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/diagnóstico , Francia , Niño , Adulto , Masculino , Femenino , Adolescente , Persona de Mediana Edad , Preescolar , Estudios de Cohortes , Adulto Joven , Lactante , Secuenciación del Exoma , Anciano , Secuenciación Completa del Genoma , ADN Mitocondrial/genética , Diagnóstico Diferencial
15.
Eur J Hum Genet ; 32(7): 858-863, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38778080

RESUMEN

The ABC and ACMG variant classification systems were compared by asking mainly European clinical laboratories to classify variants in 10 challenging cases using both systems, and to state if the variant in question would be reported as a relevant result or not as a measure of clinical utility. In contrast to the ABC system, the ACMG system was not made to guide variant reporting but to determine the likelihood of pathogenicity. Nevertheless, this comparison is justified since the ACMG class determines variant reporting in many laboratories. Forty-three laboratories participated in the survey. In seven cases, the classification system used did not influence the reporting likelihood when variants labeled as "maybe report" after ACMG-based classification were included. In three cases of population frequent but disease-associated variants, there was a difference in favor of reporting after ABC classification. A possible reason is that ABC step C (standard variant comments) allows a variant to be reported in one clinical setting but not another, e.g., based on Bayesian-based likelihood calculation of clinical relevance. Finally, the selection of ACMG criteria was compared between 36 laboratories. When excluding criteria used by less than four laboratories (<10%), the average concordance rate was 46%. Taken together, ABC-based classification is more clear-cut than ACMG-based classification since molecular and clinical information is handled separately, and variant reporting can be adapted to the clinical question and phenotype. Furthermore, variants do not get a clinically inappropriate label, like pathogenic when not pathogenic in a clinical context, or variant of unknown significance when the significance is known.


Asunto(s)
Variación Genética , Humanos , Pruebas Genéticas/normas , Pruebas Genéticas/métodos
16.
Brain ; 135(Pt 1): 23-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22189565

RESUMEN

MFN2 and OPA1 genes encode two dynamin-like GTPase proteins involved in the fusion of the mitochondrial membrane. They have been associated with Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy, respectively. We report a large family with optic atrophy beginning in early childhood, associated with axonal neuropathy and mitochondrial myopathy in adult life. The clinical presentation looks like the autosomal dominant optic atrophy 'plus' phenotype linked to OPA1 mutations but is associated with a novel MFN2 missense mutation (c.629A>T, p.D210V). Multiple mitochondrial DNA deletions were found in skeletal muscle and this observation makes MFN2 a novel gene associated with 'mitochondrial DNA breakage' syndrome. Contrary to previous studies in patients with Charcot-Marie-Tooth disease type 2A, fibroblasts carrying the MFN2 mutation present with a respiratory chain deficiency, a fragmentation of the mitochondrial network and a significant reduction of MFN2 protein expression. Furthermore, we show for the first time that impaired mitochondrial fusion is responsible for a deficiency to repair stress-induced mitochondrial DNA damage. It is likely that defect in mitochondrial DNA repair is due to variability in repair protein content across the mitochondrial population and is at least partially responsible for mitochondrial DNA instability.


Asunto(s)
ADN Mitocondrial/genética , GTP Fosfohidrolasas/genética , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Atrofia Óptica/genética , Adolescente , Adulto , Niño , Daño del ADN , ADN Mitocondrial/metabolismo , Femenino , GTP Fosfohidrolasas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Miopatías Mitocondriales/complicaciones , Miopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación Missense , Atrofia Óptica/complicaciones , Atrofia Óptica/metabolismo , Linaje
17.
Ophthalmic Genet ; 44(3): 304-312, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36094066

RESUMEN

BACKGROUND: Wolfram syndrome type 1 is a rare neurodegenerative disorder including diabetes insipidus, diabetes mellitus, optic atrophy, and deafness, with variable additional findings. The phenotypic spectrum is very heterogeneous, with non-autoimmune juvenile-onset diabetes and optic atrophy as minimal criteria for the diagnosis. Biallelic mutations in the WFS1 gene are the causative genetic anomaly for the syndrome, with, however, no evident genotype-phenotype correlation. Among the clinical features of the disease, diabetic retinopathy depicts a rarely reported microvascular complication. In this report, we describe the clinical and genetic findings in a 26-year-old patient presenting with Wolfram syndrome and severe diabetic retinopathy. METHODS: The mutation screening was performed by polymerase chain reaction followed by Sanger sequencing of the entire coding sequence of the WFS1 gene. RESULTS: A novel homozygous missense variant c.1901A>T (p.Lys634Met) was found in the proband and classified as probably pathogenic according to the American College of Medical Genetics and Genomics. CONCLUSIONS: The molecular study of the WFS1 gene is essential for the diagnostic confirmation, to provide appropriate genetic counseling and a mutational screening in the at-risk relatives. The c.1901A>T (p.Lys634 Met) is a novel variant that could be responsible for a severe form of Wolfram syndrome with early and proliferative diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Atrofia Óptica , Síndrome de Wolfram , Humanos , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/genética , Mutación , Mutación Missense , Atrofia Óptica/genética , Síndrome de Wolfram/diagnóstico , Síndrome de Wolfram/genética
18.
Genes (Basel) ; 14(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136976

RESUMEN

Mitochondrial disorders are characterized by a huge clinical, biochemical, and genetic heterogeneity, which poses significant diagnostic challenges. Several studies report that more than 50% of patients with suspected mitochondrial disease could have a non-mitochondrial disorder. Thus, only the identification of the causative pathogenic variant can confirm the diagnosis. Herein, we describe the diagnostic journey of a family suspected of having a mitochondrial disorder who were referred to our Genetics Department. The proband presented with the association of cerebellar ataxia, COX-negative fibers on muscle histology, and mtDNA deletions. Whole exome sequencing (WES), supplemented by a high-resolution array, comparative genomic hybridization (array-CGH), allowed us to identify two pathogenic variants in the non-mitochondrial SYNE1 gene. The proband and her affected sister were found to be compound heterozygous for a known nonsense variant (c.13258C>T, p.(Arg4420Ter)), and a large intragenic deletion that was predicted to result in a loss of function. To our knowledge, this is the first report of a large intragenic deletion of SYNE1 in patients with cerebellar ataxia (ARCA1). This report highlights the interest in a pangenomic approach to identify the genetic basis in heterogeneous neuromuscular patients with the possible cause of mitochondrial disease. Moreover, even rare copy number variations should be considered in patients with a phenotype suggestive of SYNE1 deficiency.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Mitocondriales , Humanos , Femenino , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Proteínas del Citoesqueleto/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Proteínas del Tejido Nervioso/genética
19.
EMBO Mol Med ; 15(8): e16090, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37431816

RESUMEN

Gerber et al report 2 autosomal recessive pathogenic Misato homolog 1 (MSTO1) variants causing hereditary optic atrophy and raise concerns about a previously identified dominant variant of MSTO1 by Gal et al (2017).


Asunto(s)
Proteínas de Ciclo Celular , Atrofias Ópticas Hereditarias , Humanos , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Mutación
20.
Mitochondrion ; 68: 138-144, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509339

RESUMEN

Isolated complex III defect is a relatively rare cause of mitochondrial disorder. New genes involved were identified in the last two decades, with only a few cases described for each deficiency. UQCRC2, which encodes ubiquinol-cytochrome c reductase core protein 2, is one of the eleven structural subunits of complex III. We report seven French patients with UQCRC2 deficiency to complete the phenotype reported so far. We highlight the similarities with neoglucogenesis defect during decompensations - hypoglycaemias, liver failure and lactic acidosis - and point out the rapid improvement with glucose fluid infusion, which is a remarkable feature for a mitochondrial disorder. Finally, we discuss the relevance of coenzyme Q10 supplementation in this defect.


Asunto(s)
Acidosis Láctica , Enfermedades Mitocondriales , Humanos , Complejo III de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Ubiquinona , Acidosis Láctica/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA